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Multilayer films were synthesized from a complex of branched polyethyleneimine 
(PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-
1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an 
acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the 
positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an 
interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly 
charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images 
and SEM micrographs showed a uniform distribution of spherical copper nanoparticles 
in the homogeneous structure of the multilayer film. The optical characteristics and 
hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles 
with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles 
distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for 
applications in the field of membrane catalysis, biochips, sensor membranes, and 
controlled drug delivery.

Keywords: polyethylenimine; sodium poly-2-acrylamide-2-methyl-1-
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multilayered thin films of PEI-CuNPs/PAMPS.
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Қышқыл ортада қатты субстратқа layer-by-layer (LbL) әдісімен қабатпен 
жағылған мыс нанобөлшектері (PEI-CuNPs) және поли-2-акриламид-2-метил-1-натрий 
пропансульфонаты (РAMPSNa) бар тармақталған полиэтиленмин (PEI) кешенінің 
қатысуымен мульти қабатты пленкалар синтезделді. PEI амин топтарының қышқыл 
ортада протондалуы PEI-CuNPs жүйесінің зарядын +43,5 mV-ге дейін арттырады 
және зарядталған PEI-CuNPs жоғары зарядталған анионды PAMPS полиэлектролит 
арасындағы интерполиэлектролит кешенінің пайда болуына ықпал етеді, 
ζ-potential -141 mV-ге тең. АСМ суреттері мен микрофотографиялары көп қабатты 
пленканың біртекті құрылымында мыстың сфералық нанобөлшектерінің біркелкі 
таралуын көрсетті. PEI-CuNPs оптикалық сипаттамалары мен гидродинамикалық 
өлшемдері нанобөлшектерінің пайда болуын көрсетеді. Өлшемдері 60-300 нм, 
орташа мөлшері 100 нм дейін. Pei-CuNPs/PAMPS көп қабатты пленкасында біркелкі 
бөлінген мыс нанобөлшектері мембраналық катализ саласында, биочиптерді, 
сенсорлық мембраналарды және дәрі-дәрмектерді жеткізуді басқаруда қолдануға 
қызығушылық тудыруы мүмкін.

Түйін сөздер: полиэтиленимин; поли-2-акриламид-2-метил-1-натрий 
пропансульфонаты; PEI-Cu2+ және PEI-CuNPs кешендері; қабатты тұндыру (LbL); көп 
қабатты жұқа PEI-CuNPs/PAMPS қабықшалары.
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Синтезированы мультислойные пленки с участием комплекса разветвленного 
полиэтиленимина (PEI) с наночастицами меди (PEI-CuNPs) и поли-2-акриламид-2-
метил-1-пропансульфонатом натрия (РAMPSNa), нанесенные послойно методом 
layer-by-layer (LbL) на твердую подложку в кислой среде. Протонирование 
аминогрупп PEI в кислой среде увеличивает положительный заряд системы PEI-CuNPs 
до +43,5 mV и способствует образованию интерполиэлектролитного комплекса 
между положительно заряженным PEI-CuNPs и сильнозаряженным анионным 
полиэлектролитом РAMPS, ζ-potential которого равен -141 mV. АСМ-изображения 
и микрофотографии СЭМ показали равномерное распределение сферических 
наночастиц меди в однородной структуре мультислойной пленки. Оптическая 
характеристики и гидродинамические размеры PEI-CuNPs указывают на образование 
наночастиц PEI-CuNPs с размерами 60-300 нм, со средним размером до 100 нм. 
Наночастицы меди, равномерное распределенные в мультислойной пленке PEI-
CuNPs/PAMPS могут представлять интерес для применения в области мембранного 
катализа, в создании биочипов, сенсорных мембран и контролируемой доставки 
лекарственных препаратов.

Ключевые слова: полиэтиленимин; поли-2-акриламид-2-метил-1-
пропансульфонат натрия; комплексы PEI-Cu2+ и PEI-CuNPs; послойное осаждение 
(LbL); мультислойные тонкие пленки PEI-CuNPs/PAMPS.
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1. Introduction

One of the promising and intensively developing areas is 
the production of multilayer membranes and films by the layer-
by-layer (LbL) method, by embedding metal nanoparticles into 
their matrix to give them the desired properties and functions. 
Such thin-layer films have found wide application in the creation 
of biochips, sensor membranes, membrane nanocatalysts, for 
the stabilization of nanoparticles and controlled delivery of 
drugs, etc. The successful use of polyelectrolytes forming a 
complex due to covalent and hydrogen bonds, electrostatic 
interactions, and also due to molecular recognition made it 
possible to obtain new materials with unique physicochemical 
properties, for example, controlled thickness and morphology, 
uniform distribution of metal nanoparticles in the volume [1-3]. 
The purposeful introduction of metal nanoparticles into 
multilayer films makes it possible to use them as membrane 
nanocatalysts [4-6].

In [7-10], immobilization of mono- and bimetallic 
nanoparticles in the bulk of multilayer films was carried out to 
obtain effective nanocatalysts. It was found that the individual 
physicochemical properties of multilayer polymer composites 
depend on the choice of optimal blocks for assembling LbL 
capsules, the manufacturing technique, and the method of 
immobilization of various nanoparticles in the bulk of  
the films [7].

Pd nanoparticles attached to magnetic ferrite 
nanoparticles, supported on PAA and PEI, were used for the 
hydrogenation of olefin alcohols [8], and multilayer systems 

PAA/PVP-Au, ethyl-3-thiophene acetate/PVP-Au [9] were used 
for the reduction of nitrophenol [10]. The regularities of the 
growth of multilayers of PEI/PAA, PEI/PSS, quaternized QPEI/
PAA and QPVP/PSS based on a polymer-metal complex (PMC) 
with copper and cobalt ions were determined, and the effect of 
the nature of polymers, pH of the medium, temperature, 
conditions of layer formation and absorption of metals on  
their surfaces for the formation of nanocatalysts were  
studied [11-13].

Of great scientific and practical interest are synthetic 
polyampholytes capable of existing in various conformational 
and phase states, depending on the change in temperature, pH 
of the medium, the type and concentration of low-molecular-
weight salt, and the thermodynamic quality of the solvent. 
Depending on the nature of the acidic and basic monomers, 
polyampholytes are divided into: weakly charged, highly 
charged polyampholytes and betaines. Representatives of fully 
charged macromolecules, highly charged polyampholytes, 
consist of charged cationic and anionic monomers and have the 
ability to retain charges in a wide range of pH values [14,15]. The 
behavior of highly charged polyampholytes depends on the 
composition of the copolymers and the distribution of monomer 
units [16]. The presence of permanent charges promotes the 
effective binding of metal ions, dyes and surfactants.

Copolymer of sodium 2-acrylamido-2-
methylpropanesulfonate (AMPSNa) is a typical representative 
of highly charged polyampholytes, which belongs to the less 
studied polymers. Recent studies show that the use of AMPSNa 
and ARTAC as a monomer makes it possible to synthesize 
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polymer matrices with unique properties [17-20]. The 
importance of studies of polymers based on highly charged 
polyampholytes, in particular AMPSNa, is evidenced by a 
number of studies devoted to nanocomposite materials [21-25].

Studies on the complexation of highly charged 
polyelectrolytes with metal ions and the preparation of 
multilayer catalytic films by the LbL method have not been 
studied sufficiently and publications are of an episodic nature. 
Despite the wide range of polyelectrolytes, not all potentially 
applicable polymers are used to obtain multilayer nanocatalysts 
by LbL method.

In this work, a study was carried out on the creation of 
multilayers of a positively charged PEI-CuNPs complex and a 
negatively charged PAMPS polyelectrolyte. It is assumed that 
copper nanoparticles immobilized in PEI-CuNPs/PAMPS 
multilayers can be used as a catalytic center in the oxidation of 
organic substrates.

2. Experiment

2.1 Materials
Branched poly(ethylenimine) (PEI) with average-weight 

molecular weight Mw ~25 000 and number-average molecular 
weight Mn ~10 000 was purchased from Sigma-Aldrich GmbH 
(Figure 1). 

2-Acrylamido-2-methyl-1-propanesulfonic acid sodium 
salt solution (AMPS) (50 wt. % in aqueous solution) is the 
product of Sigma-Aldrich GmbH (Figure 2).

Copper (II) acetate monohydrate [Cu(COOCH3)2×H2O] and 
ammonium persulfate (APS) were purchased from Sigma-
Aldrich GmbH and Changzhou Qi Di Chemical Co (China) and 
used without further purification.

2.2 Methods
2.2.1 Preparation of PEI-Cu2+ and PEI-CuNPs complexes 
PEI-Cu2+ and PEI-CuNPs complexes were obtained 

according to the method described in [26]. When the solution of 

Figure 1 – Branched PEI

Figure 2 – AMPSNa

copper (II) acetate was poured into the PEI solution slowly, with 
constant stirring, the solution acquired a dark blue color (Figure 
3, a). This indicated the formation of a 4:1 polymer-metal 
complex PEI-Cu2+ which means that 4 monomer units of PEI 
coordinate with one copper ion. When sodium borohydride 
interacted with PEI-Cu2+, the solution changed color from dark 
blue to dark brown (Figure 3b). The reduction of copper ions 
coordinated with PEI was accompanied by a short-term 
evolution of gaseous hydrogen. The resulting dark brown 
solution of PEI-CuNPs was dialyzed for 24 hours to remove low 
molecular weight impurities (Figure 3, c).

а) b) c)

Figure 3 – PEI - Cu2+ complex (a); PEI-CuNPs nanoparticles (b), 
dialysis of PEI-CuNPs nanoparticles (c)

The formation of four coordination complexes between 
the repeating units of PEI and bivalent copper ions, as well as 
the reduction of the PEI-Cu2+ complex with sodium borohydride 
to the formation of Cu0 nanoparticles stabilized by PEI, can be 
represented by the following scheme

Scheme 1 – Scheme of the formation of the PEI-Cu2+ 
coordination complex and its reduction with sodium 

borohydride to the zero-valence state 

2.2.2 Preparation of SiO2 substrate - SurfusNanoLane for 
the deposition of PEI-CuNPs/PAMPS multilayers 

For the deposition of multilayers, a SiO2-SurfusNanoLane 
substrate was used, which was kept in Piranha solution (a 
mixture of hydrogen peroxide and sulfuric acid in a ratio of 1:4) 
for 24 hours to remove organic contaminants and increase the 
surface hydrophilicity. Then the substrate was washed with 
water and dried in a stream of nitrogen.

2.2.3 Layer-by-layer (LbL) deposition
The LbL assembly process was performed by immersing a 

solid base in a dilute solution of a positively charged 
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polyelectrolyte to adsorb the first monolayer, then immersing it 
in a negatively charged polyelectrolyte to obtain a second 
monolayer [27-29]. The multilayer deposition was carried out 
using ND-DC DipCoater Nadetech (Spain) rotary spray gun 
(Figure 4). Multilayers were formed on the surface of the 
substrates using PEI-CuNPs and PAMPS solutions with a 
concentration of 10-2 mol/L at pH 4. The dipping procedure was 
carried out in the following order: 1) PEI-CuNPs solution; 2, 3) 
rinsing with distilled water; 4) PAMPS solution. In this way, PEI 
– CuNPs/PAMPS multilayers were obtained, consisting of 50 
and 100 bilayers.

Figure 4 – Preparation of PEI–CuNPs/PAMPS multilayers using 
Rotary DipCoater

2.2.4 Determination of the optical characteristics of PEI-
CuNPs solutions

The absorption spectra of PEI-CuNPs solutions in the 
ultraviolet and visible regions were measured on Specord 210 
plusBU spectrophotometer (Germany, 2012). The quartz cells 
had an optical path length of 5 and 10 mm. All measurements 
were carried out at 25°C and atmospheric pressure, at a 
wavelength of 200-800 nm. In the spectrophotometric 
experiment, measurements were taken into account with a 
relative error of no more than 3%.

2.2.5 Determination of the average hydrodynamic 
dimensions and zeta potential of PEI-Cu2+ and PEI-CuNPs 
solutions

The average hydrodynamic dimensions and zeta potential 
of PEI-Cu2+ and PEI-CuNPs solutions were determined by 

dynamic laser light scattering on Malvern Zetasizer Nano ZS90 
instrument (Malvern Instruments Ltd., UK). In the dynamic light 
scattering method, measurements were taken into account 
with a relative error of no more than 5%.

2.2.6 PAMPS identification
The identification of PAMPS obtained by the method of 

radical polymerization was carried out by means of IR and NMR 
spectroscopy. IR spectra of PAMPS were recorded on Cary 660 
FTIR IR Fourier spectrophotometer (Agilent Technologies, USA) 
in the frequency range 400-4000 cm-1. The limit of permissible 
error of the wave number scale is ± 0.1 cm-1.

1H NMR spectra were recorded on Bruker BioSpinAvance 
III 500 MHz NMR spectrometer (500 MHz, Germany) using 
deuterated water as a solvent. Chemical shifts are measured 
relative to the residual proton signals of the deuterated solvent.

2.2.7 Study of morphological, topographic and structural 
characteristics

SEM JSM-6390LV scanning electron microscope (Jeol, 
Japan) was used to study the surface morphology of the 
obtained multilayers deposited on SiO2-SurfusNanoLane 
substrate. The measurements were carried out in a high vacuum 
mode using a secondary electron detector at an accelerating 
voltage of 15 kV. Carbon was sprayed onto the surface of the 
samples using magnetron sputtering of carbon fiber to increase 
conductivity. The samples were mounted on aluminum rods 
with conductive carbon tape.

The topographic characteristics of the multilayer were 
obtained using scanning probe microscopy SmartSPM-1000 
(Russia) with a scanning range of 100x100x15 microns. Scanner 
resonant frequencies> 7 kHz in XY and> 15 kHz in Z.

3. Results and Discussion

3.1 Synthesis and characterization of PAMPS
PAMPS was obtained by radical polymerization of a 30% 

aqueous AMPS solution in the presence of 0.25% APS at 50°C 
for 4 h. Unreacted monomers were removed by dialysis through 
a membrane in a container with distilled water with a volume of 
5 L, followed by drying in an oven for 5 h, in a refrigerator for 3 
h, and in a lyophilic unit for 3 h. Figure 5 shows the IR spectrum 
of PAMPS obtained by the method of radical polymerization.

Figure 5 – IR absorption spectrum of PAMPS
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Figure 6 – 1H NMR spectra of PAMPS
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Figure 7 – UV-Vis absorption spectra of the colloidal PEI-CuNPs 
solution before (1) and after (2) dialysis for 24 h

The formation of PEI-CuNPs nanoparticles is characterized by 
the appearance of an absorption band at 535-540 nm. After 
dialysis for 24 h, the absorption spectra of PEI-CuNPs did not 
undergo significant changes, and the maximum of the 
absorption band at 540 nm remained practically unchanged for 
several months. This indicates the high stability of PEI-CuNPs 
nanoparticles. The decrease in the spectrum intensity after 
dialysis is associated with the removal of small nanoparticles, as 
demonstrated in the next section.

The absorption spectra of PAMPS are characterized by the 
corresponding peaks of bending and stretching vibrations of 
functional groups. The broad absorption band at 3334 cm-1 
corresponds to stretching vibrations of N-H groups. Stretching 
vibrations of the carbonyl group of the primary amide appear at 
1655 cm-1. Bending vibrations of C – N and C – NH amino groups 
appear at 1542 cm-1. The absorption bands at 1388 cm-1 and 
1297 cm-1 correspond to the –CH2- and CH groups of the polymer 
ridge. The characteristic S = O absorption bands appear in the 
regions of 1045 cm-1 and 1188 cm-1 [17,30,31].

The structure of PAMPS was also identified by 1H NMR 
spectroscopy (Figure 6). The data obtained show the presence 
of 6H protons of 2 methyl groups, resonating in the region of 
1.36 ppm, which confirms the linear structure of PAMPS and is 
in good agreement with the data of [32].

3.2 UV-Vis absorption spectra of PEI-CuNPs before and 
after dialysis 

Figure 7 shows the results of a study of a colloidal solution 
of PEI-CuNPs by UV-Vis spectroscopy before and after dialysis. 
According to [33], the absorption spectrum of a copper acetate 
solution is characterized by a maximum at a wavelength of λ = 
800 nm. In the spectrum of the PEI solution, no maxima are 
observed in the wavelength range of 200-1000 nm. When a 
copper acetate solution is added to an aqueous PEI solution, a 
maximum appears in the spectrum at a wavelength of λ = 620 
nm and a maximum characteristic of a pure copper solution 
disappears, which indicates the formation of PEI-Cu2+ complex. 
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3.3 Average hydrodynamic dimensions and zeta potential 
of PEI and PEI-CuNPs solutions

Figure 8 shows a histogram of the numerical size and 
ζ-potential distribution of the pure PEI solution obtained by 
dynamic light scattering. The histogram of the hydrodynamic 
particle size distribution of pure PEI is mainly divided into two 
ranges with an average particle size of 3-200 nm and a range of 
size scatter of 3-4 nm and 200 nm, respectively (Figure 8, a). 
More than 70% of them fall within the 3-4 nm size range. The 
zeta potential of the pure PEI solution is positive and is +2.95 ± 
0.1 mV (Figure 8, b).

The distribution of PEI-CuNPs nanoparticles before dialysis 
is bimodal. The average hydrodynamic sizes of nanoparticles 
vary from 65 to 198 nm (Figure 9, a). In this case, particles with 
a size of 198 nm prevail, the amount of which is 96%. The zeta 
potential of the PEI-CuNPs solution before dialysis is +32.9 ± 1.6 
mV (Figure 9, b).
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Figure 8 – Histogram of PEI distribution by hydrodynamic dimensions (a) and ζ-potential of the solution (b)
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Figure 9 – Histogram of the PEI-CuNPs distribution by hydrodynamic dimensions (a) and  
ζ-potential of the solution (b) before dialysis

The histogram of the hydrodynamic size distribution of 
PEI-CuNPs nanoparticles with an average particle size of 100 nm 
and a particle scatter range of 60-300 nm is shown in Figure 10, 
a. It can be seen that the distribution of copper nanoparticles in 
the PEI-CuNPs solution after dialysis became monomodal, i.e. it 
can be assumed that only large PEI-CuNPs nanoparticles 
remained in the solution, while small nanoparticles were 
washed out. The solution has a positive zeta potential 
corresponding to +43.5 - 2.04 mV (Figure 10, b), since copper 
nanoparticles are chemisorbed with a positively charged 
polyelectrolyte - PEI at pH = 4.0.

This also indicates the stability of the aqueous suspension 
of PEI-CuNPs, which is provided due to the prevalence of 
electrostatic repulsion between positively charged particles 
reducing the possibility of aggregation. The positive charge of 
the PEI-CuNPs means it will form a polyionic complex with the 
negatively charged PAMPS.
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Figure 10 – Histogram of the PEI-CuNPs distribution by hydrodynamic dimensions (a) and  
ζ-potential of the solution (b) after dialysis

3.4 Preparation of PEI-CuNPs/PAMPS multilayers
In order to create multilayer films by the LbL method, we 

used solutions of a positively charged polyelectrolyte - PEI-
CuNPs and a negatively charged polyelectrolyte - sodium poly-
2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa). SiO2-
SurfusNanoLane was used as a substrate, on which positively 

a) b)

Figure 11 – Multilayers: a – PEI-CuNPs/PAMPS (50 layers); b – PEI-CuNPs/PAMPS (100 layers) applied to the plate  
using the layer-by-layer method

charged PEI-CuNPs nanoparticles (ζ = + 43.5±2.04 mV) and 
negatively charged PAMPS (ζ = -141 ± 7 mV) were alternately 
deposited. As can be seen from Fig. 11, the substrate is coated 
uniformly with PEI-CuNPs/PAMPS multilayers, consisting of 50 
(Figure 11, a) and 100 layers (Figure 11, b) painted in a saturated 
blue color.

Figure 12 shows AFM images of PEI-CuNPs/PAMPSNa 
multilayer films (50 layers) deposited on a silicon substrate. It is 
seen that the surface of multilayer films is sufficiently smooth 
and porous. The pores are spherical. A granular morphology 
with a developed surface structure with a grain size of 50-130 
nm is observed. The roughness of multilayer PEI-CuNPs/PAMPS 
films is small and averages ≥ 20 nm. The formation of a uniform 
surface of multilayers is apparently associated with the 

formation of interpolyelectrolyte complexes with positively 
charged PEI-CuNPs nanoparticles and negatively charged 
PAMPS macromolecules stabilized by polyionic contacts.

The data of the atomic force microscopy are confirmed by 
the results of the scanning electron microscope (Figure 13). In 
homogeneous multilayers, evenly distributed and isolated 
copper nanoparticles, which have a spherical shape, can  
be seen.
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max 20 nm

Figure 12 – Surface topography of PEI-CuNPs/PAMPS multilayer film (50 layers)

         
 

Figure 12 – Surface topography of PEI-CuNPs/PAMPS multilayer film (50 layers). 
 

The data of the atomic force microscopy are confirmed by the results of the scanning electron 
microscope (Figure 13). In homogeneous multilayers, evenly distributed and isolated copper 
nanoparticles, which have a spherical shape, can be seen. 

 
 
 
 

     
 
 
 
 
 
 
 

Figure 13 – SEM micrographs of PEI-CuNPs/PAMPS multilayer film 
 

4. Conclusion 
Multilayered thin films composed of PEI-CuNPs/РAMPS have been obtained by layer-by-

layer deposition of positively charged PEI-CuNPs and negatively charged PAMPS on the surface of 
SiO2. In aqueous solution PEI, PEI-Cu2+ and PEI-CuNPs were characterized by UV-Vis 
spectroscopy, DLS, and zeta-potential. In solid state multilayers of PEI-CuNPs/РAMPS were 
studied by AFM and SEM. It was found that nanoparticles of copper are uniformly distributed 
within multilayers and in perspective can be used as membrane catalysts for oxidation of organic 
substrates.    
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Multilayered thin films composed of PEI-CuNPs/РAMPS 
have been obtained by layer-by-layer deposition of positively 
charged PEI-CuNPs and negatively charged PAMPS on the 
surface of SiO2. In aqueous solution PEI, PEI-Cu2+ and PEI-CuNPs 
were characterized by UV-Vis spectroscopy, DLS, and zeta-
potential. In solid state multilayers of PEI-CuNPs/РAMPS were 
studied by AFM and SEM. It was found that nanoparticles of 

copper are uniformly distributed within multilayers and in 
perspective can be used as membrane catalysts for oxidation of 
organic substrates.   
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