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The review is devoted to the rapidly developing field of modern supramolecular chemistry 
– cyclodextrin complexes of biologically active nitrogen heterocycles, such as piperidines, 
piperazines, morpholines and pyridines. Interest in cyclodextrin complexes is growing due to 
the search and construction of supramolecular assemblies for targeted drug delivery. The latter 
is achieved as a result of supramolecular self-assembly, based on the principles of molecular 
recognition, and is one of the areas of modern chemistry, leading to the creation of new materials 
with new properties.

This review fully demonstrates the ongoing scientific and practical interest in the problem of 
encapsulation with cyclodextrins, including nanoencapsulation. Encapsulation with cyclodextrins 
provides a wide range of advantages: obtaining solid dosage forms from liquid ones, stabilizing and 
protecting active substances from the adverse effects of external factors, increasing solubility, 
increasing bioavailability, reducing toxicity, prolonging action, etc.

The presented review includes recent advances in the field of supramolecular complexes 
of biologically active nitrogen heterocycles with cyclodextrins and concludes with a discussion 
and identification of future promising directions for research. The review presents the results of 
supramolecular self-assembly of biologically active azaheterocycles with cyclodextrins.
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Шолу қазіргі заманғы супрамолекулалық химияның қарқынды дамып келе жатқан 
бағыттарының бірі – пиперидиндер, пиперазиндер, морфолиндер және пиридиндер 
сияқты биологиялық белсенді азотты гетероциклдердің циклодекстриндік кешендеріне 
арналған. Циклодекстрин кешеніне қызығушылық дәрі-дәрмектерді мақсатты жеткізу 
үшін супрамолекулалық ансамбльдерді іздеуге және жобалауға байланысты артып келеді. 
Соңғысына молекулалық тану принциптеріне негізделген супрамолекулалық өзін-өзі 
құрастыру негізінде қол жеткізіледі және жаңа қасиеттері бар жаңа материалдардың 
жаңадан құруына әкелетін заманауи химияның бағыттарының бірі болып табылады.

Бұл шолу циклодекстриндермен капсулдау мәселесіне, соның ішінде 
нанокапсуляцияға ғылыми және практикалық қызығушылықты толығымен көрсетеді. 
Циклодекстриндермен капсулдау көптеген артықшылықтар береді: сұйық заттардан қатты 
дәрілік формаларды алу, белсенді заттарды сыртқы факторлардың қолайсыз әсерінен 
тұрақтандыру және қорғау, ерігіштіктің жоғарылауы, биожетімділіктің жоғарылауы, 
уыттылықтың төмендеуі, әсердің ұзаруы және т. б.

Ұсынылған шолу циклодекстриндермен биологиялық белсенді азотты 
гетероциклдердің супрамолекулалық кешендері саласының соңғы жетістіктерін 
қамтиды және болашақ перспективалық зерттеу бағыттарын талқылау және анықтаумен 
аяқталады. Шолуда биологиялық белсенді азагетероциклдердің циклодекстриндермен 
супрамолекулалық өзін-өзі құрастыру нәтижелері ұсынылады.

Түйін сөздер: супрамолекулалық кешендер; циклодекстриндер; биологиялық 
белсенділік; азотты гетероциклдер; пиперидиндер; пиперазиндер; морфолиндер; 
пиридиндер.
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Обзор посвящен одному из бурно развивающихся направлений современной 
супрамолекулярной химии – циклодекстриновым комплексам биологически активных 
азотистых гетероциклов, таких как пиперидины, пиперазины, морфолины и пиридины. 
Интерес к циклодекстриновым комплексам растет в связи с поиском и конструированием 
супрамолекулярных ансамблей для адресной доставки лекарств. Последнее достигается 
в результате супрамолекулярной самосборки, основанной на принципах молекулярного 
распознавания, и является одним из направлений современной химии, приводящим к 
созданию новых материалов с новыми свойствами.

Настоящий обзор в полной мере демонстрирует неугасающий научный и практический 
интерес к проблеме капсулирования циклодекстринами, в том числе нанокапсулированию. 
Капсулирование циклодекстринами дает широкий спектр преимуществ: получение 
твердых лекарственных форм из жидких,  стабилизация и защита активных веществ от 
неблагоприятного воздействия внешних факторов, увеличение растворимости, повышение 
биодоступности, снижение токсичности, пролонгация действия и др.

Представленный обзор включает последние достижения в области 
супрамолекулярных комплексов биологически активных азотистых гетероциклов с 
циклодекстринами и завершается обсуждением и определением будущих перспективных 
направлений исследований. В обзоре представлены результаты супрамолекулярной 
самосборки биологически активных азагетероциклов с циклодекстринами.

Ключевые слова: супрамолекулярные комплексы; циклодекстрины; биологическая 
активность; азотистые гетероциклы; пиперидины; пиперазины; морфолины; пиридины.
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1. Introduction

The use of cyclodextrins (CDs) to create complexes 
including biologically active compounds, pharmaceuticals and 
drugs is one of the main directions in the development of 
supramolecular chemistry and the new forms of medicinal 
substances production [1-7]. Among the currently widely known 
encapsulating receptor compounds for pharmaceutically active 
compounds, such as c [8,9], crown ethers [10], calixarenes [11, 
12] and others, CDs are distinguished by a number of remarkable 
properties due to their structure and serve reference host 
molecules for a wide range of natural and synthetic molecules. 
Cyclodextrins are among the available semi-natural compounds 
obtained from starch.

The CD molecule consists of several glucopyranose units 
and has the shape of a torus (a truncated hollow cone). The most 
common types of cyclodextrins are its α-, β- and γ-forms, 
containing 6, 7 and 8 glucopyranose units, respectively (Figure 1):

(host) in an aqueous environment. This is due to the fact that all 
the primary hydroxyl groups of the CD molecule are directed 
outward, the secondary ones are directed into the cavity, 
where the H-3 and H-5 atoms and the glycosidic oxygen are 
also located. The result of this structure is the formation of the 
outer hydrophilic structure of the CD, while the inner cavity has 
hydrophobic properties. This CD configuration promotes the 
formation of inclusion complexes with guest molecules those 
are less polar than water and if their geometry and structure 
are complementary to the cavity of the cyclodextrin receptor.

To regulate the solubility of cyclodextrin complexes, in 
recent years, intensive work has been carried out in the field of 
preparation and use of various CD derivatives as drug receptors, 
which differ significantly from the original cyclic oligosaccharide 
in physicochemical properties and solubility [13-18].

Currently, alkyl, hydroxyalkyl, acyl, carboxyl, phosphono-
diamidoester, amino, maltosyl, glucosyl derivatives of CD are 
known [19], which are characterized by good solubility in water. 
Hydrophobic derivatives of CD are represented by diethyl and 
triethyl analogues [20]. They are poorly soluble in water and can 
be used to prolong the action of a pharmaceutical drug as part 
of an inclusion complex. Zwitterionic derivatives of CD – 
carboxyl and amino derivatives – are characterized by a strong 
dependence of solubility in water on the acidity of the medium.

It should be noted that work towards the production of CD 
derivatives is being carried out on a large scale and with high 
returns.

Scientific and practical interest in the problem of 
encapsulation with cyclodextrins [21,22], including nanoen-
capsulation [23-28], remains high, as evidenced by the available 
literature on this topic, published in periodicals and materials of 
international conferences and symposia.

Figure 1 – Structure and arrangement of hydrogen atoms in CD 
(α-CD: n=6; β-CD: n=7; γ-CD: n=8) [1-7]

The most important distinguishing feature of CD is the 
ability to hydrophobically bind a guest molecule in its cavity 
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Complexation with CD often makes it possible to solve 
such issues as instability of a substance during storage, 
insufficient solubility in water, and an inconvenient state of 
aggregation to use. It is noted that the latest achievements in 
chemistry of intermolecular interactions and the most 
promising areas of its use are associated with the processes of 
self-assembly and self-organization, which, in particular,  
can be implemented in the supramolecular creation of 
nanoencapsulated complexes of pharmaceuticals with CDs.

Particular interest in CDs as drug carriers compared to 
other complexing agents is due to three properties: high 
stability, a sufficiently large cavity diameter, and good body 
tolerance of cyclodextrin dosage forms.

As a result of complexation with CD, the following is 
achieved:

1) reduction of toxicity;
2) the possibility of converting liquid substrates into 

crystalline ones;
3) increased pharmacological activity;
4) increasing the stability of drugs to hydrolysis and 

oxidation.
Among those used to obtain inclusion complexes, the 

most affordable one is currently β-CD, while prices for α- and 
γ-CD are still quite high. However, it should be noted that β-CD 
is insufficiently soluble in water (18.5 mg/ml at 25°C [1]).

Supramolecular nanoencapsulation of pharmaceuticals 
with cyclodextrins makes it possible to obtain solid dosage 
forms from liquid ones, helps stabilize active substances to the 
external effects of light, heat, and atmospheric oxygen, and also 
increases solubility, improves bioavailability, and masks 
undesirable odors and taste of biologically active compounds. 
As a result of encapsulation of medicinal substances, it is 
possible to obtain drugs with prolonged, programmed and 
transdermal effects. In addition, the possibility of targeted 
transport of the drug in the body directly to the site of its action 
increases.

The reversibility of the process of supramolecular 
interaction of a biologically active compound with an 
encapsulating agent plays an important role in regulating the 
ability of a substance to pass through biomembranes or 
lipophilic barriers. The rate and extent of bioavailability of a 
pharmaceutically active substrate can be adjusted by changing 
various environmental factors that affect the solubility of the 
complex, its destruction in the biological environment and, 
consequently, the ability of the drug to penetrate obstacles to 
the intended target organ. In the equilibrium mechanism of 
dissolution and destruction of supramolecular complexes, 
competing processes of exchange of the “guest” molecule in 
the CD cavity can also occur [29].

The choice of pharmaceutical substrates for the 
preparation of supramolecular assemblies is determined by the 
pharmaceutical activity of the encapsulated molecules and the 
tasks assigned to researchers.

Currently, organic chemists are conducting a significant 
amount of work on the study of biologically active nitrogen 

heterocycles [30-32]. Heterocyclic aza compounds are 
widespread in nature and are essential for many biological 
functions. Nitrogen heterocycles are isolated in large quantities 
from natural compounds, and new synthetic biological active 
compounds with a predicted wide spectrum of pharmacological 
action are being created [33-36].

When studying CD inclusion complexes with guest 
molecules, high-resolution NMR spectroscopy is widely used to 
establish the structure and configuration of supramolecular 
assemblies [37]. The exclusive role of the NMR method in 
chemical research, especially complex formation, is determined 
by the fact that it turns out to be a very useful and often 
irreplaceable source of information at all stages of research - 
from studying the composition of complex reaction mixtures to 
establishing the structure and characteristics of complex 
compounds, the distribution of electron density in them and 
intermolecular interactions. Based on the change in the 
chemical shifts of cyclodextrin protons during complex 
formation with guest molecules, it is concluded that the 
substrate is included in the internal cavity of the CD receptor or 
the formation of external or mixed complexes [37,38].

In this review, biologically active nitrogen heterocycles 
such as piperidines, piperazines, morpholines, pyridines and 
their derivatives will be considered as substrates in 
supramolecular complex formation. An analysis of the literature 
on the preparation, structure and properties of supramolecular 
inclusion complexes of cyclodextrins with biologically active 
azaheterocycles will include data for the last decade. The 
collected material indicates an ever-increasing interest in 
ensembles consisting of nanosized supramolecular CD particles 
with biologically active azaheterocycles, and there is no doubt 
that the development of high-tech and less expensive 
technologies for creating supramolecular nanodispersed drugs 
is a very relevant and sought-after topic.

2. Main Part

2.1 Supramolecular cyclodextrin inclusion complexes with 
piperidines

The complexation of 4-(but-3-en-1-yn-1-yl)-1-(3-butoxy-
propyl)piperidin-4-yl benzoate 1 with β-CD (Figure 2) was 
studied using NMR spectroscopy [39]. The inclusion of 1 into the 
cavity of the β-CD molecule leads to significant changes in the 
chemical shifts of the H-3 and H-5 protons of β-CD located in 
the internal cavity. In the ROESY spectrum of the inclusion 
complex 1/(β-CD)2, cross-peaks are observed corresponding to 
intermolecular interactions of the H-3 and H-5 protons of β-CD 
with the protons of the aromatic and piperidine rings of 1. The 
authors believe that the most probable is the formation of 
inclusion complexes composition 1/(β-CD)2 (Figure 2).

The works [40,41] present the results of the supra-
molecular self-assembly of the inclusion complex of 
1-(2-ethoxyethyl)-4-phenylpiperidin-4-yl acetate 2 with β-CD 
(Figure 3). Data obtained by NMR spectroscopy, thermal analysis 
and molecular modeling suggest that the composition of the 
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resulting inclusion complex 
corresponds to 2/(β-CD)2.  
The primary portion of the 

Figure 2 – Proposed structure of 
the inclusion complex 1/(β-CD)2

Figure 3 – Proposed 
structure of the inclusion 

complex 2/(β-CD)2

3/(β-CD) 4/(β-CD)

Figure 4 – Proposed structure of inclusion 
complexes 3/(β-CD) и 4/(β-CD)

Figure 5 – Proposed structure of inclusion  
complexes 5/(β-CD)

It was shown in [44] that (2E,4E)-5-(2H-1,3-benzodioxol-5-
yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (piperine) 6 forms 
inclusion complexes of the composition 6/(α-CD)2 and 6/γ-CD 
(Figure 6). In dissolution tests, 6/(α-CD)2 and 6/γ-CD showed 
higher solubility than free 6 and similar physical mixtures. 
NOESY spectroscopy measurements revealed that the structure 
of 6/(α-CD)2 is an inclusion complex in which interaction occurs 
through the aliphatic -HC=CH- and methylenedioxyphenyl 
groups of 6 with two α-CD molecules in a head-to-head manner. 
In γ-CD, the interaction occurs preferentially with the O–CH2–O 
functional group of the methylenedioxyphenyl group in a 1:1 
molar ratio (Figure 6) [44].

6/(α-CD)2 6/β-CD, 6/-CD

Figure 6 – Proposed structure of inclusion 
complexes 6/(α-CD)2, 6/β-CD и 6/γ-CD

Later [45], the inclusion complex 6/Ethylenediamine 
(EDA)-β-CD was synthesized by coevaporation. The structure 
and properties of the inclusion complex were confirmed using 
IR, UV, XRD, TGA, 1H and 2D ROESY NMR. 1H and 2D ROESY NMR 
curves showed that 6 should penetrate into the EDA-β-CD 
cavity from the wide side of the conical rim by the 
methylenedioxyphenyl [45]. Molecular modeling confirmed 
that the complex has the composition 6/EDA-β-CD (Figure 7). 
The authors [45] believe that the inclusion complex may 
contribute to the widespread clinical use of piperine in the 
future.

guest molecule resides within the cavity of one β-CD molecule, 
comprising part of the piperidine ring, ethoxyethyl, and acetoxy 
groups. Meanwhile, the phenyl group of the guest molecule is 
enclosed within the cavity of another β-CD molecule (Figure 3). 
Pharmacological investi-gations have indicated that the 2/(β-
CD)2 supracomplex is promising for further extensive testing, 
notably for its enhanced and prolonged conduction anesthesia 
effects.

A comparative analysis of the 1H and 13C NMR spectra of 
1-(2-ethoxyethyl)-4-[(3-propylacetylene)-1-yl]piperidin-4-ol 3 
and its  benzoate 4  was carried out and their inclusion 
complexes with β-CD [42]. The alterations in chemical shift 
values for the 1H and 13C nuclei of both substrates and the 
receptor in inclusion complexes were analyzed. It was shown 
that the supramolecular interaction of 3 and 4 with β-CD is 
accompanied by the entry of one N-ethoxyethyl moiety of the 
substrate molecule into the inner sphere of one receptor 
molecule (Figure 4).

Figure 7 – Proposed structure of inclusion 
complexes 6/EDA-β-CD

The use of 1-methylpiperidin-4-ol 5 in supramolecular 
self-assembly with β-CD (Figure 5) [43] led to the formation of 
inclusion complexes with the composition 5/β-CD. The inclusion 
complex crystallizes in the monoclinic space group.
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Complexation of β-CD with 2-methyl-3-(piperidin-1-yl)-1-
(p-tolyl)propan-1-one (tolperisone) 7 (Figure 8), is accompanied 
by the introduction of a structural fragment of one guest 
molecule into the inner sphere of one host those [46]. The 
study’s findings offer valuable insights into utilizing β-CD’s 
complexation with tolperisone, suggesting it as a promising 
approach for formulating solid pharmaceuticals using β-CD as a 
drug carrier system.

Figure 8 – Proposed structures of inclusion  
complexes 7/β-CD

On the possibility of creating a supramolecular complex 
1’,4-didehydro-1-deoxy-1,4-dihydro-5’-(2-methylpropyl)-1-
oxorifamycin XIV (rifabutin) 8 (Figure 9) with HP-β-CD (HP – 
2-prop-2-ol-1-yl), formed as a result of the interaction of 
piperidine component 8 and the hydrophobic cavity of HP-β-
CD, was reported in [47]. For the 8/HP-β-CD complex, the 
stability constant was determined and the standard Gibbs 
energy of formation of the intermolecular complex was 
calculated [47]. Later, these authors [48] reported that 
molecules 8 do not form inclusion complexes with HP-β-CD 
molecules. Moreover, the increase in solubility of 8 is due to the 
formation of weak intermolecular associates. The limited 
bonding between the piperidine segment of molecule 8 and the 
HP-β-CD cavity results in the creation of soluble complexes of 
8-HP-β-CD ranging in size from 100 to 600 nm. Consequently, 
this enhances the solubility of 8 by threefold in water and 
significantly boosts its efficacy against experimental 
tuberculosis infection [48].

Figure 9 – Proposed associate structure 8/HP-β-CD

Figure 10 – Proposed 
structure of inclusion 

complexes 9/β-CD

The complexation of 
2-(pyridinyl-3)piperidine (alkaloid 
anabasine) 9 with β-CD was 
studied using NMR spectroscopy 
(Figure 10) [49]. It was established 
that anabasine reacts with β-CD 
to form an inclusion complex of 
the composition 9/β-CD, in which 
9 enters the cyclodextrin cavity 
with a piperidine cycle.

An inclusion complex of 
6-amino-2-imino-4-(piperidin-1-
yl)pyrimidin-1(2H)-ol (minoxidil) 
10 with HP-β-CD of the 
composition 10/ HP-β-CD (Figure 
11) was obtained using the 
freeze-drying method [50]. The 
complex formation was validated 
by TLC, TGA and NMR results.

Spectroscopic investi-
gations, complemented by 
molecular modeling techniques, 

Figure 11 – Proposed 
structure of inclusion 

complexes 10/HP-β-CD

were employed to characterize the inclusion complex of 
1-methyl-1-[2-(4-(trifluoromethyl)phenyl)thiazol-4-yl)methyl]
piperidin-1-ium chloride 11 (Figure 12) with β-CD in both 
solution and the crystalline state [51]. The composition of the 
inclusion complex involving 11 and β-CD was identified through 
1H NMR spectroscopy as well as isothermal titration calorimetry. 
The likely structure of the inclusion complex (Figure 12), derived 
from molecular docking analysis, was strongly supported by the 
ROESY experiment [51].

Figure 12 – Proposed structure of inclusion complexes 
11/β-CD

2.2 Supramolecular cyclodextrin inclusion complexes with 
piperazines

Inclusion complexes of 2-{2-[4-(4-chlorophenyl)(phenyl)
methyl]piperazin-1-yl }ethoxyacetic acid (cetirizine) 12 and 
β-CD were obtained (Figure 13) [52].

The authors do not report the structure of the inclusion 
complex. Analysis of the solubility phase diagram of 12-β-CD 
showed a linear increase in the solubility of 12 as the 
concentration of β-CD increased. The inclusion of 12 in the β-CD 
system significantly reduced the instability of 12 in the presence 
of oxidative factors. The ability to penetrate artificial biological 
membranes, exhibited by 12 after complexation, was also 
enhanced [52]. Further study of the inclusion complexes of 12 
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Figure 13 – Structure of the inclusion complex 12/β-CD

with α-CD and β-CD using molecular mechanical studies in the 
light mode and experimental ROESY studies allowed us to 
determine the exact structures of the complexes (Figure 13) 
[53]. The structures were tested using density functional theory, 
which is an accurate method for determining structure.

The inclusion complexes of 4-amino-5-fluoro-3-[5-(4-
methylpiperazin-1-yl)-1,3-dihydro-2H-benzo[d]imidazol-2-
ylidene]quinolin-2(3H)-one (dovitinib) 13 were characterized 
using 1H NMR (anticancer agent) with γ-CD, HP-γ-CD and SBE-γ-
CD (SBE-sulfobutyl ether) (Figure 14), as well as the formation of 
nano- and microparticles using dynamic light scattering and in 
vitro permeability studies [54, 55]. Due to its ability to form ion 
pairs with 13, SBE-β-CD was the best solubilizer among the CDs 
tested. However, the high molecular weight of SBE-β-CD 
compared to γ-CD leads to an increase in the volume of the  
drug and, accordingly, a decrease in penetration through  
membranes [54].

Figure 14 – Structure of the inclusion complex 13/γ-CD, 13/
HP-γ-CD и 13/SBE-γ-CD

2.3 Supramolecular cyclodextrin inclusion complexes with 
morpholines

The 1H, 13C, COSY and HMQC NMR spectra of 
3 - (2 - e t h o x y e t h y l ) -7- [ 2 - (N - m o r p h o l i n o) e t h y l ] - 3 ,7-
diazobicyclo[3.3.1]nonane 14 (Figure 15) and its inclusion 
complexes with α- , β- and γ-CD were interpreted [56]. It was 
demonstrated that the complexation of 14 with cyclodextrin 
involves the insertion of one morpholine fragment from the 
substrate molecule into the inner cavity of one receptor 
molecule (Figure 14).

Figure 15 – Proposed scheme for the formation of inclusion 
complexes 14 with α-, β- и γ-CD

The formation of supramolecular inclusion complexes is 
confirmed by changes in proton chemical shifts 14. In all 
complexes, most of the proton signals of molecule 14 are shifted 
to the low-frequency region of the spectrum. A significant 
difference in chemical shifts is observed for H-14, H-15, H-17 
and H-18, which are surrounded by more electronegative 
oxygen and nitrogen atoms. Such signal shifts indicate the entry 
of the morpholine moiety of molecule 14 into the internal 
spheres of cyclodextrins. It was noted that almost all hydrogen 
atoms 14 slightly change the position of the signals in the 
complexes, which indicates the presence of nonvalent 
interactions with outer-sphere CD protons and/or solvent 
molecules [56].

It was reported [57] that an inclusion complex of the local 
anesthetic – 4-[3-(4-butoxyphenoxy)propyl]morpholine 
(proxin) 15 (Figure 16) with HP-β-CD of a 1:1 composition was 
obtained. Complexation contributed to a 14-fold increase in the 
solubility of 15 in water. X-ray diffraction measurements 
revealed a loss of crystal structure of 15 in the presence of HP-
β-CD, indicating the formation of an inclusion complex. Using 1H 
NMR (DOSY) experiments, the association constant of 15 with 
HP-β-CD was determined (Ka = 923.1 mol/L), and Overhauser 
nuclear analysis (ROESY) confirmed the formation of the 
inclusion complex 15/HP-β-CD, by detection of spatial proximity 
between the hydrogen atoms of the aromatic ring 15 and the 
HP-β-CD cavity [57].

Figure 16 – Proposed scheme for the formation of inclusion 
complexes 15/HP-β-CD
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The creation of inclusion complexes involving derivatives 
of thiourea — N-[(5-Cl 20 or 5-methyl 21)pyridin-2-yl]
carbamothioylthiophene-2-carboxamide, was studied (Figure 
21) with both α- and β-CDs [62]. Thiourea derivatives can be 
accommodated within the cavity of a single cyclodextrin 
molecule or a cyclodextrin-dimer. The most stable inclusion 
complexes typically involve one thiourea molecule encapsulated 
by two CD molecules. 

Figure 17 – Structure 
of inclusion complexes 

16/CD Figure 19 – Structure of 18/β-CD inclusion complexes

Figure 18 – Structure of 
17/EDA-β-CD inclusion 

complexes

2.4 Supramolecular 
cyclodextrin inclusion complexes 
with pyridines

The complex formation of 
3 - ( t h i o p h e n - 2 - y l ) - [ 1 , 2 , 3 ]
triazolo[1,5-a]pyridine 16 (Figure 
17) with DM-β-CD (DM – 
dimaltosyl), HP-β-CD and β-CD 
showed that the inclusion complex 
is formed with a composition of 1:1 
[58]. 2D NMR spectroscopy 
revealed that the thienyl group of 
compound 16 is encapsulated 
within the cyclodextrin (CD) cavity, 
whereas the triazolopyridine 
extends beyond the outer boundary 
of the DM-β-CD [58].

The successful preparation of 
a stable inclusion complex between 
dimethyl 2,6-dimethyl-4-(2-
nitrophenyl)-1,4-dihydropyridine-
3,5-dicarboxylate (nifendipine) 17 
(Figure 18) EDA-β was reported 
[59]. - CD composition 1:1. Visible 
and FT-IR spectroscopy showed 
that the nitroaromatic moiety 17 
was encapsulated inside the cavity 
of EDA-β-CD [59].

synthesized [60]. The inclusion of molecule 18 occurs by placing 
the chloropyridyl group on the wide side of the truncated rim, 
and the cyano group on the narrow side of the rim [60].

It was established [61] that 2,2’-bipyridine 19 forms an 
inclusion complex with β-CD (Figure 20) in an aqueous solution.

Figure 20 – Chemical structure of 19

Figure 21 – Structure of inclusion complexes 20/α-CD and 21/(α-CD)2

3. Conclusion

Modern impressive successes in the preparation of 
cyclodextrin complexes of biologically active nitrogen 
heterocycles stimulate researchers to make wider use of the 
latest achievements of chemistry of intermolecular guest-host 
interactions in their research and inspire them to continue to 
pursue this promising and interesting problem. The literature 
data presented in this review over the past 10 years indicate the 
undoubted promise of this area, which is attracting increasingly 
close attention from researchers. The review highlights the 
importance of new supramolecular complexes of piperidine, 
piperazine, morpholine and pyridine. A special role is given to 
establishing the structure and characteristics of supramolecular 
complexes and the nature of intermolecular interactions during 

the formation of ensembles. Many beneficial properties of CDs 
and biologically active nitrogen heterocycles have been 
exploited in engineering to enhance and improve the quality of 
drug delivery. It is predicted that the solution to problems 
associated with targeted drug delivery will occur in the field of 
supramolecular design of nanoparticles and the use of 
nanotechnology. In this regard, the development of high-tech 
and less costly technologies for creating nanodispersed 
medicines remains very relevant and in demand. Advances in 
the field of supramolecular chemistry of complexes of 
biologically active azaheterocycles with CDs are due to the 
ability to ascertain the stoichiometry, association constants, 
and conformations of molecular complexes, as well as to offer 
insights into the symmetry of molecular assemblies using phase 
solubility diagrams, NMR, X-ray diffractometry, scanning 

An inclusion complex of [N1-methyl-N1-[(6-chloro-3-
pyridyl)methyl]-N2-cyanoacetamidin]a (the insecticide 
acetamiprid) 18, with β-CD (Figure 19) of a 1:1 composition was 
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electron microscopy, differential scanning calorimetry and 
molecular mechanical modeling. Overall, this review can serve 
as a valuable resource for researchers, engineers, and parties 
interested in the development and application of supramolecular 
complexes, not only azaheterocycles with CDs, but also other 
classes of organic compounds with other intermolecular 
interaction receptors.
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