Benchmark study of the performance of density functional theory for reduction potentials of vanadium compounds

  • Samat N. Tussupbayev Institute of Polymer Materials and Technologies, Almaty, Kazakhstan https://orcid.org/0000-0003-3470-1510
  • Gulnar M. Kudaibergenova Institute of Polymer Materials and Technologies, Almaty, Kazakhstan
Keywords: density functional theory, basis set, standard electrode potential, geometry optimization

Abstract

A systematic benchmark study was performed for the first time to investigate the performance of density functional theory for calculation of reduction potentials of vanadium compounds. Six density functionals of different types were selected for testing: local OLYP and M06L, global hybrid O3LYP and B3LYP, as well as, meta-hybrid functionals TPSSh and M06. Local and hybrid functionals with a relatively high contribution of Hartree-Fock exchange showed unsatisfactory results. In particular, the widely used hybrid functional B3LYP for the transformation VIII→VII occurring in the vanadium redox flow battery yields a negative value of the standard potential instead of a positive one. Among the tested functionals the smallest deviation from the experimental data provides the meta-hybrid functional TPSSh with a 10% contribution of the Hartree-Fock exchange. The computational protocol to calculate redox potentials of vanadium compounds is suggested.

References

1 Alotto P, Guarnieri M, Moro F (2014) Renew Sust Energ Rev 29:325-335. Crossref

2 Noack J, Roznyatovskaya N, Herr T, Fischer P (2015) Angewandte Chemie International Edition 54(34):9776-9809. Crossref

3 Skyllas-Kazacos M, Rychcik M, Robins RG, Fane A, Green M (1986) J Electrochem Soc 133:1057-1058. Crossref

4 Zhao P, Zhang H, Zhou H, Chen J, Gao S, Yi B (2006) J Power Sources 162:1416-1420. Crossref

5 Bard AJ, Parsons B, Jordon J (1985) Standard potentials in aqueous solutions. Dekker, New York, USA.

6 Kazacos M (1989) Electrolyte optimization and electrode material evaluation for the vanadium redox battery. MSc Thesis, University of New South Wales, Australia.

7 Akesson R, Pettersson LGM, Sandstrom M, Wahlgren U (1994) J Am Chem Soc 116:8691-8704. Crossref

8 Benmelouka M, Messaoudi S, Furet E, Gautier R, Le Fur E, Pivan JY (2003) J Phys Chem A 107:4122-4129. Crossref

9 Sepehr F, Paddison SJ (2013) Chem Phys Lett 585:53-58. Crossref

10 Larsen SC (2001) J Phys Chem A 105:8333-8338. Crossref

11 Grant CV, Cope W, Ball JA, Maresch GG, Gaffney BJ, Fink W (1999) J Phys Chem B 103:10627-10631. Crossref

12 Vijayakumar M, Burton SD, Huang C, Li L, Yang Z, Graff GL (2010) J Power Sources 195:7709-7717. Crossref

13 Bühl M, Parrinello M (2001) Chem-Eur J 7:4487-4494. Crossref

14 Krakowiak J, Lundberg D, Persson I (2012) Inorg Chem 51:9598-9609. Crossref

15 Vijayakumar M, Li L, Graff G, Liu J, Zhang H, Yang Z (2011) J Power Sources 196:3669-3672. Crossref

16 Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York, USA.

17 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al. (2009) Gaussian 09 (Gaussian, Inc., Wallingford CT).

18 Handy NC, Cohen AJ (2001) Mol Phys 99:403-412. Crossref

19 Hoe WM, Cohen A, Handy NC (2001) Phys Lett 341:319-328. Crossref

20 Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785-789. Crossref

21 Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200-206. Crossref

22 Zhao Y, Truhlar DG (2006) J Chem Phys 125:1-18. Crossref

23 Cohen AJ, Handy NC (2001) Mol Phys 99:607-615. Crossref

24 Slater JC (1974) Quantum Theory of Molecules and Solids Vol. 4: The Self‐Consistent Field for Molecules and Solids. McGraw-Hill, New York, USA.

25 Vosko SH, WIlk L, Nusair M (1980) Can J Phys 58:1200-1211. Crossref

26 Becke AD (1998) Phys Rev A 38:3098. Crossref

27 Becke AD (1993) J Chem Phys 98:5648. Crossref

28 Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401. Crossref

29 Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129. Crossref

30 Zhao Y, Truhlar DG (2008) Theor Chem 120:215-241. Crossref

31 Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297-3305. Crossref

32 Dunning THJr (1989) J Chem Phys 90:1007. Crossref

33 Woon DE, Dunning THJr (1993) J Chem Phys 98:1358. Crossref

34 Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107. Crossref

35 Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378-6396. Crossref

36 Fawcett WR (2008) Langmuir 24:9868-9875. Crossref
Published
2020-03-25
How to Cite
Tussupbayev, S., & Kudaibergenova, G. (2020). Benchmark study of the performance of density functional theory for reduction potentials of vanadium compounds. Chemical Bulletin of Kazakh National University, 96(1), 14-21. https://doi.org/https://doi.org/10.15328/cb1093
Section
Physical Chemistry and Electrochemistry