Molybdenum oxide based sensors

Keywords: molybdenum oxide, biosensor, electrochemical sensor, electrode modification

Abstract

In this review article were considered the works of electrochemical sensors modified with molybdenum oxide. The work of sensors based on molybdenum oxide was systematized, a comparison table was developed, the sensors were classified according to the purpose of use. Methods of molybdenum oxide synthesis used to modify the working electrode in electrochemical sensors were considered. The various methods have been used to synthesize molybdenum oxide, such as a thermal, hydrothermal, electrochemical, electric spark, pulsed laser method, acid condensation, electrophoretic precipitation, pulse potential precipitation. The main parameters of the molybdenum oxide modified sensors, such as the detection limit, linear range, response time, sensitivity, and other parameters were compared. As a result of studies, it was found that molybdenum oxide is selected as a modifying material in electrochemical sensors due to the unique physicochemical properties of molybdenum oxide, in particular because of mechanical strength, electrical conductivity, electro catalytic activity, crystallinity. The features of electrochemical biosensors coated with molybdenum oxide were described for the detection of important compounds in specific samples. Sensors based on molybdenum oxide have been used for detection of glucose, dopamine, ethanol, ascorbic acid, troponin-1, norepinephrine, procalcitonin, L-lactate, bromate, chlorate, E110, tartrazine, hydrochlorothiazide, human epidermal growth factor-2, lithium,sodium,potassium. This paper provides general summarized information about current aspects of research works related to electrochemical sensors based on molybdenum oxide.

Author Biographies

Nazerke Zh. Zhumasheva, al-Farabi Kazakh National University, Almaty, Kazakhstan

Казахский Национальный Университет имени аль-Фараби, факультет химии и химической технологии, кафедра аналитической, коллоидной химии и технологии редких элементов

Должность: студент 2 курса докторантуры специальности 6D072000-ХТНВ

 

Leyla K. Kudreeva, al-Farabi Kazakh National University, Almaty, Kazakhstan

Казахский Национальный Университет им.аль-Фараби, факультет химии и химической технологии, кафедра аналитической, коллоидной химии и технологии редких элементов

Должность:Зам.декана по учебной, методической и воспитательной работе, И.о. доцента

References

1 Metkar SK, Girigoswami K (2019) Biocatal Agric Biotechnol 17:271-283. Crossref

2 Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB (2018) Biosens Bioelectron 102:540-552. Crossref

3 Yoon J, Lee SN, Shin MK, Kim HW, Choi HK, Lee T, et al (2019) Biosens Bioelectron Crossref

4 Alexandru Ciucu A (2015)J Biosens Bioelectron. Crossref

5 Gan X, Zhao H, Quan X (2017) Biosens Bioelectron 89:56-71. Crossref

6 Barua S, Dutta HS, Gogoi S, Devi R, Khan R (2018) ACS Appl Nano Mater 1:2-25. Crossref

7 Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK (2019) Microchim Acta Crossref

8 Huang Q, Li X, Feng S, Zhuge W, Liu F, Peng J, et al (2018) Anal Methods 10:3594-3601. Crossref

9 Mandal B, Aaryashree, Das M, Than Htay M, Mukherjee S (2019) Mater Res Bull 109:281-290. Crossref

10 de Castro IA, Datta RS, Ou JZ, Castellanos-Gomez A, Sriram S, Daeneke T, et al. (2017) Adv Mater 29:1701619. Crossref

11 Tian L, Liu L, Chen L, Lu N, Xu H (2005) Sensors Actuators, B Chem 105:484-489. Crossref

12 Zakharova GS, Fattakhova ZA, Zhu Q, Enyashin AN (2019) J Electroanal Chem 840:187-192. Crossref

13 Dauletbay A, Braida W, Nauryzbaev M, Kudreeva L, Kurbatov A, Tulegenov A (2011) Eurasian Chem J 13:253-260. Crossref

14 Kudreeva LK, Nauryzbaev MK, Kurbatov AP, Kamysbaev DH, Adilbekova AO, Mukataeva ZS (2015) IOP Conf Ser Mater Sci Eng 103:012044. Crossref

15 Dauletbay A, Braida W, Nauryzbaev M, Kudreeva L (2016) Chem Eng Trans 47:163-168. Crossref

16 Kurbanoglu S, Erkmen C, Uslu B (2020) TrAC Trends Anal Chem 124:115809. Crossref

17 Sharma M, Gangan A, Chakraborty B, Rout CS (2017) J Phys D Appl Phys 50:475401. Crossref

18 Wu SG, Zhang ZX, Zhao QP, Zhou L, Yao Y (2014) Chinese J Chem Phys 27:600. Crossref

19 Zhang BY, Zavabeti A, Chrimes AF, Haque F, O’Dell LA, Khan H, et al (2018) Adv Funct Mater 28:1706006. Crossref

20 Çakar I, Özdokur KV, Demir B, Yavuz E, Demirkol DO, Koçak S, et al (2013) Sensors Actuators, B Chem 185:331-336. Crossref

21 Zhou K, Shen D, Li X, Chen Y, Hou L, Zhang Y, et al (2020) Talanta 209:120507. Crossref

22 Fazio E, Spadaro S, Bonsignore M, Lavanya N, Sekar C, Leonardi SG, et al (2018) J Electroanal Chem 814:91-96. Crossref

23 Keerthi M, Boopathy G, Chen S-M, Chen T-W, Lou B-S (2019) Sci Rep 9:13075. Crossref

24 Roy N, Yasmin S, Jeon S (2020) Microchem J 153:104501. Crossref

25 Ozdokur KV, Demir B, Atman E, Tatli AY, Yilmaz B, Demirkol DO, et al. (2016) Sensors Actuators, B Chem 237:291-297. Crossref

26 Rumyantseva MN, Kovalenko VV, Gaskov AM, Panier T (2007) Russ J Gen Chem+ LI:61-70. (In Russian)

27 Kamakoti V, Selvam AP, Shanmugam NR, Muthukumar S, Prasad S (2016) Biosensors 6:1-36. Crossref

28 Samdani KJ, Joh DW, Rath MK, Lee KT (2017) Electrochim Acta 252:268-274. Crossref

29 Xue J, Yang L, Jia Y, Zhang Y, Wu D, Ma H, et al (2019) Biosens Bioelectron 142:111524. Crossref

30 Shakir I, Shahid M, Yang HW, Cherevko S, Chung CH, Kang DJ (2012) J Solid State Electrochem 16:2197-2201. Crossref

31 Augustine S, Joshi AG, Yadav BK, Mehta A, Kumar P, Renugopalakrishanan V, et al (2018) MRS Commun 8:668-679. Crossref

32 Khanfar MF, Abu-Nameh ESM, Afaneh AT, Saket MM, Ahmad A, Faraj W, et al (2019) Bulg Chem Commun 51:305-311. Crossref

33 Kamysbaev D, Serikbaev B, Arbuz G (2017) Chem Bull Kazakh Natl Univ 4-11. Crossref

34 Serikbaev B, Kamysbaev D, Arbuz G, Alimbai D, Arin A (2017) Chem Bull Kazakh Natl Univ 20-25. Crossref

35 Kamysbaev DKh, Serikbaev BA, Begdirov S, Derbisalin M (2014) Materials of the 8th Beremzhanov Congress on Chemistry and Chemical Technology, Kazakh-American Free University, Almaty, Kazakhstan. P.92-96. (In Russian)

36 Sakthivel M, Sukanya R, Chen SM (2018) Sensors Actuators, B Chem 273:616-626. Crossref

37 Yu L, Zhao J, Tricard S, Wang Q, Fang J (2019) Electrochim Acta 322:134712. Crossref

38 Kolozof PA, Florou AB, Spyrou K, Hrbac J, Prodromidis MI (2020) Sensors Actuators, B Chem 304:127268. Crossref

39 Bian LJ, Zhang JH, Qi J, Liu XX, Dermot D, Lau KT (2010) Sensors Actuators, B Chem 147:73-77. Crossref

40 Ye JS, Wen Y, Zhang W De, Cui HF, Xu GQ, Sheu FS (2006) Nanotechnology 17:3994-4001. Crossref

41 Li M, Huang X, Yu H (2019) Mater Sci Eng C 101:614-618. Crossref

42 Özdokur KV, Tatli AYI, Yilmaz B, Koçak S, Ertaş FN (2016) Int J Hydrogen Energy 41:5927-5933. Crossref

43 Yang D, Yang L, Zhong L, Yu X, Feng L (2019) Electrochim Acta 295:524-531. Crossref

44 Rawat NK, Ghosh R (2020) Conducting polymer–based nanobiosensors in Nanosensors for Smart Cities (ed. Han B, Tomer V, Nguyen T, Farmani A, Singh PK), Elsevier. P.129-142. Crossref

45 Zhou K, Shen D, Li X, Chen Y, Hou L, Zhang Y, et al (2019) Talanta 120507. Crossref

46 Spadaro S, Fazio E, Bonsignore M, Lavanya N, Sekar C, Leonardi SG, et al (2019) Lect Notes Electr En 539:31-38. Crossref

47 Khanfar MF, Abu-Nameh ESM, Afaneh AT, Saket MM, Ahmad A, Faraj W, et al (2019) Bulg Chem Commun 51:305-311. Crossref
Published
2021-06-14
How to Cite
Zhumasheva, N., Kudreeva, L., & Kosybayeva, D. (2021). Molybdenum oxide based sensors. Chemical Bulletin of Kazakh National University, 101(2), 28-41. https://doi.org/https://doi.org/10.15328/cb1164