Thermoconversion of ethanol on Al2O3 and SiO2 oxides
Abstract
This work is devoted to the study of the catalytic properties of Al2O3 and SiO2 in the process of thermal conversion of ethanol, as well as to the determination of the acid characteristics of these oxides The catalytic properties of oxides in the thermal conversion of ethanol were studied in a flow-through mode at a reaction temperature of 250°C and a space velocity of 0,5 h-1. The acidic characteristics of the Al2O3 and SiO2 oxides were determined by the method temperature-programmed desorption of ammonia (TPD-NH3).
It has been established that the process of thermal conversion of ethanol includes the reactions of dehydration, dehydrogenation and dimerization. During the thermal conversion of ethanol on aluminum and silicon oxides, a dehydration reaction occurs with the formation of diethyl ether, with concentrations of 24,5 vol. % on Al2O3 and 19,6 vol. % on SiO2. It was determined that in parallel with the reaction of ethanol dehydration, its dehydrogenation with the formation of acetaldehyde takes place, but with a lower selectivity compared to dehydration. It was found that on Al2O3, which has a lower acidity in comparison with SiO2, the deformation of acetaldehyde occurs with the formation of butanol.
References
2 Rass-Hansen. J, Falsig H, Jоrgensen B, et al (2007) JCTB 82:329-333. Crossref
3 Dossumov K, Ergazieva GE, Ermagambet BT, et al (2020) Chem Pap 74:373-388. Crossref
4 Skinner MJ, Michor EL, Fan W, et al (2011) ChemSusChem 4:1151-1156. Crossref
5 Tu YJ, Chen YW (1998) Ind Eng Chem Res 37:2618-2622. Crossref
6 Tu YJ, Chen YW (2001) Ind Eng Chem Res 40:5889-5893. Crossref
7 Wang QN, Shi L, Lu AH (2015) ChemCatChem 7:2846-2852. Crossref
8 Li MY, Lu WD, He L, Schüth F, Lu AH (2018) ChemCatChem 11:481-487. Crossref
9 Wang QN, Shi L, Li W, Li WC, Si R, Schüth F, Lu AH (2018) Catal Sci Technol 8:472-479. Crossref
10 Sethuraman R, Bakshi NN, Katikaneni SP, Idem RO (2001) Fuel Process Technol 73:197-222. Crossref
11 Klinthongchai Y, Prichanont S, Praserthdam P, Jongsomjit B (2020) J Environ Chem Eng 8 (3):103752. Crossref
12 Sharipov VI, Beregovsova NG, Baryshnikova SV (2013) Journal of Siberian Federal University. Chemistry 4:344-351 (In Russian)
13 Hidalgo JM, Tisler Z, Kubicka D, Raabova K, Bulanek R (2016) J Molecular Catal A: Chem 420:178-189. Crossref
14 Gines MJL, Iglesia E (1998) J Catal 176 (1):155-172. Crossref
15 Cosimo JI, Dıez VK, Xu M, Iglesia E, Apesteguıa CR (1998) J Catal 178 (2):499-510. Crossref
16 Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA J Power Sources 124:99-103. Crossref
17 Kaddouri A, Mazzocchia C (2004) Catal Commun 5:339-345. Crossref
18 Pampararo G, Garbarino G, et al (2020) Appl Catal A-Gen 602:117710. Crossref
19 Zhang H, Hui-RuTan, et al (2020) J Catal 389:19-28. Crossref
20 Sushkevich VL, Ivanova II, et al (2013) ChemCatChem 5:2367-2373. Crossref
21 Berteau P, Delmon B. (1989) Catal Today 5:121-137. Crossref
22 Marcu IC, Tichit D (2009) Catal Today 147:231-238. Crossref
23 Kamyar N, Khani Y, Amini MM, Bahadoran F, Safari N (2020) Int J Hydrog Energy 45:21341-21353. Crossref
24 De Wilde JF, Czopinski CJ, Bhan A (2014) ACS Catalysis 4 (12):4425-4433. Crossref
25 Ling Chong S, Chee S.J, Cheng CK (2017) MJAS 21:839-848. Crossref
26 Finger P. H, Osmari TA, et al Appl Catal A-Gen 117236. Crossref
27 Shan J, Janvelyan N, et al (2017) Appl Catal B:541-550. Crossref
28 Beregovsova NG, Sharipova VI (2014) J Sib Fed Univ Chem 7:242-251. (In Russian)
29 Husnitdinov IW, Ahmetzyanov АМ, et al (2009) ChemchemTech 52:119-122. (In Russian)
30 Ozbay N, Oktar N (2009) J Chem Eng Data 54:3208-3214. Crossref
31 Wojciech Piotrowski, Robert Kubica (2021) Process 9:1425. Crossref
32 Wang D, Han Z. Production Method of Ethyl Acetate by Means of Condensation of Acetaldehyde. CN. Patent CN1245794A, 21 August 1998.
33 A Feasibility Study Analysing Various Process Routes of the Production of Ethyl Acetate. Available online: URL (accessed on 20 July 2021)
34 Wu R, Sun K, Chen Y, et al (2021) Surf Sci 703:121742. Crossref
35 Sun ZhН, Vasconcelos AС, Bottari G, et al (2016) ACS Sustain Chem Eng 5:1738-1746. Crossref
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.