Thermoconversion of ethanol on Al2O3 and SiO2 oxides

  • Manshuk M. Mambetova Al-Farabi Kazakh National University, Center of Physical Chemical Methods of Research and Analysis, Almaty, Kazakhstan; Kazakh National Women’s Teacher Training University, Almaty, Kazakhstan https://orcid.org/0000-0002-1744-3647
  • Gaukhar Ye. Yergaziyevna Al-Farabi Kazakh National University, Center of Physical Chemical Methods of Research and Analysis, Almaty, Kazakhstan https://orcid.org/0000-0001-9464-5317
  • Kusman Dossumov Al-Farabi Kazakh National University, Center of Physical Chemical Methods of Research and Analysis, Almaty, Kazakhstan https://orcid.org/0000-0001-5216-0426
Keywords: ethanol, aluminum oxide, silicon oxide, thermoconversion, carrier, acetaldehyde, diethyl ether, preparation method

Abstract

This work is devoted to the study of the catalytic properties of Al2O3 and SiO2 in the process of thermal conversion of ethanol, as well as to the determination of the acid characteristics of these oxides The catalytic properties of oxides in the thermal conversion of ethanol were studied in a flow-through mode at a reaction temperature of 250°C and a space velocity of 0,5 h-1. The acidic characteristics of the Al2O3 and SiO2 oxides were determined by the method temperature-programmed desorption of ammonia (TPD-NH3). 

It has been established that the process of thermal conversion of ethanol includes the reactions of dehydration, dehydrogenation and dimerization. During the thermal conversion of ethanol on aluminum and silicon oxides, a dehydration reaction occurs with the formation of diethyl ether, with concentrations of 24,5 vol. % on Al2O3 and 19,6 vol. % on SiO2. It was determined that in parallel with the reaction of ethanol dehydration, its dehydrogenation with the formation of acetaldehyde takes place, but with a lower selectivity compared to dehydration. It was found that on Al2O3, which has a lower acidity in comparison with SiO2, the deformation of acetaldehyde occurs with the formation of butanol.

Author Biography

Gaukhar Ye. Yergaziyevna, Al-Farabi Kazakh National University, Center of Physical Chemical Methods of Research and Analysis, Almaty, Kazakhstan

к.х.н, главный научный сотрудник 

References

1 Santacesaria E, Carotenuto G, Tesser R, et al (2012) Chem Eng J 179:209-220. Crossref

2 Rass-Hansen. J, Falsig H, Jоrgensen B, et al (2007) JCTB 82:329-333. Crossref

3 Dossumov K, Ergazieva GE, Ermagambet BT, et al (2020) Chem Pap 74:373-388. Crossref

4 Skinner MJ, Michor EL, Fan W, et al (2011) ChemSusChem 4:1151-1156. Crossref

5 Tu YJ, Chen YW (1998) Ind Eng Chem Res 37:2618-2622. Crossref

6 Tu YJ, Chen YW (2001) Ind Eng Chem Res 40:5889-5893. Crossref

7 Wang QN, Shi L, Lu AH (2015) ChemCatChem 7:2846-2852. Crossref

8 Li MY, Lu WD, He L, Schüth F, Lu AH (2018) ChemCatChem 11:481-487. Crossref

9 Wang QN, Shi L, Li W, Li WC, Si R, Schüth F, Lu AH (2018) Catal Sci Technol 8:472-479. Crossref

10 Sethuraman R, Bakshi NN, Katikaneni SP, Idem RO (2001) Fuel Process Technol 73:197-222. Crossref

11 Klinthongchai Y, Prichanont S, Praserthdam P, Jongsomjit B (2020) J Environ Chem Eng 8 (3):103752. Crossref

12 Sharipov VI, Beregovsova NG, Baryshnikova SV (2013) Journal of Siberian Federal University. Chemistry 4:344-351 (In Russian)

13 Hidalgo JM, Tisler Z, Kubicka D, Raabova K, Bulanek R (2016) J Molecular Catal A: Chem 420:178-189. Crossref

14 Gines MJL, Iglesia E (1998) J Catal 176 (1):155-172. Crossref

15 Cosimo JI, Dıez VK, Xu M, Iglesia E, Apesteguıa CR (1998) J Catal 178 (2):499-510. Crossref

16 Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA J Power Sources 124:99-103. Crossref

17 Kaddouri A, Mazzocchia C (2004) Catal Commun 5:339-345. Crossref

18 Pampararo G, Garbarino G, et al (2020) Appl Catal A-Gen 602:117710. Crossref

19 Zhang H, Hui-RuTan, et al (2020) J Catal 389:19-28. Crossref

20 Sushkevich VL, Ivanova II, et al (2013) ChemCatChem 5:2367-2373. Crossref

21 Berteau P, Delmon B. (1989) Catal Today 5:121-137. Crossref

22 Marcu IC, Tichit D (2009) Catal Today 147:231-238. Crossref

23 Kamyar N, Khani Y, Amini MM, Bahadoran F, Safari N (2020) Int J Hydrog Energy 45:21341-21353. Crossref

24 De Wilde JF, Czopinski CJ, Bhan A (2014) ACS Catalysis 4 (12):4425-4433. Crossref

25 Ling Chong S, Chee S.J, Cheng CK (2017) MJAS 21:839-848. Crossref

26 Finger P. H, Osmari TA, et al Appl Catal A-Gen 117236. Crossref

27 Shan J, Janvelyan N, et al (2017) Appl Catal B:541-550. Crossref

28 Beregovsova NG, Sharipova VI (2014) J Sib Fed Univ Chem 7:242-251. (In Russian)

29 Husnitdinov IW, Ahmetzyanov АМ, et al (2009) ChemchemTech 52:119-122. (In Russian)

30 Ozbay N, Oktar N (2009) J Chem Eng Data 54:3208-3214. Crossref

31 Wojciech Piotrowski, Robert Kubica (2021) Process 9:1425. Crossref

32 Wang D, Han Z. Production Method of Ethyl Acetate by Means of Condensation of Acetaldehyde. CN. Patent CN1245794A, 21 August 1998.

33 A Feasibility Study Analysing Various Process Routes of the Production of Ethyl Acetate. Available online: URL (accessed on 20 July 2021)

34 Wu R, Sun K, Chen Y, et al (2021) Surf Sci 703:121742. Crossref

35 Sun ZhН, Vasconcelos AС, Bottari G, et al (2016) ACS Sustain Chem Eng 5:1738-1746. Crossref
Published
2022-01-21
How to Cite
Mambetova, M., Yergaziyevna, G., & Dossumov, K. (2022). Thermoconversion of ethanol on Al2O3 and SiO2 oxides. Chemical Bulletin of Kazakh National University, 104(1), 22-29. https://doi.org/https://doi.org/10.15328/cb1227