Получение и изучение физико-химических характеристик мультислойных полимерных композитов на основе стабилизированных поли(этиленимином) наночастиц меди и поли(2-акриламид-2-метил-1-пропансульфоната натрия)

Ключевые слова: полиэтиленимин, поли-2-акриламид-2-метил-1-пропансульфонат натрия, комплексы PEI-Cu2 и PEI-CuNPs, послойное осаждение (LbL), мультислойные тонкие пленки PEI-CuNPs/PAMPS

Аннотация

 

Синтезированы мультислойные пленки с участием комплекса разветвленного полиэтиленимина (PEI) с наночастицами меди (PEI-CuNPs) и поли-2-акриламид-2-метил-1-пропансульфонатом натрия (РAMPSNa), нанесенные послойно методом layer-by-layer (LbL) на твердую подложку в кислой среде. Протонирование аминогрупп PEI в кислой среде увеличивает положительный заряд системы PEI-CuNPs до +43,5 mV и способствует образованию интерполиэлектролитного комплекса между положительно заряженным PEI-CuNPs и сильнозаряженным анионным полиэлектролитом РAMPS, ζ-potential которого равен -141 mV. АСМ-изображения и микрофотографии СЭМ показали равномерное распределение сферических наночастиц меди в однородной структуре мультислойной пленки. Оптическая характеристики и гидродинамические размеры PEI-CuNPs указывают на образование наночастиц PEI-CuNPs с размерами 60-300 нм, со средним размером до 100 нм. Наночастицы меди, равномерное распределенные в мультислойной пленке PEI-CuNPs/PAMPS могут представлять интерес для применения в области мембранного катализа, в создании биочипов, сенсорных мембран и контролируемой доставки лекарственных препаратов.

Литература

1. Stockton WB, Rubner MF (1997) Macromolecules 30 (9):2717-2725. Crossref

2. Tong WJ, Gao CY, Möhwald H (2005) Chem Mater 17(18):4610-4616. Crossref

3. Kida T, Mouri M, Akashi M (2006) Angew Chem Int Edit 118(45):7696-7698. Crossref

4. Richardson JJ, Cui J, Bjornmalm M, et al (2016) Chem Rev 116:14828-14867. Crossref

5. Dhar J, Patil S (2012) ACS Appl Mater Inter 4:1803-1812. Crossref

6. Kudaibergenov S, Tatykhanova G, Bakranov N, Tursunova R (2017) Artifacts on Surface Phenomena and Technological Facets. IntechOpen, UK. P.147-164. Crossref

7. Xiao FX, Pagliaro M, Xu YJ, et al (2016) Chem Soc Rev 45:3088-3121. Crossref

8. Wang Y, Lee JK (2007) J. Molecular Catalisis A: Chemical 263:163-16. Crossref

9. Jiang Y, Shen Y, Wu P (2008) J. Colloid and Interface Science 319:398-405. Crossref

10. Dhar J, Patil S (2012) Appl. Mater. Interfaces 4:1803-1812. Crossref

11. Mentbayeva AA, Koshikova AO, Karagulanova AS, et al (2012) News of NAS RK. Series of Chemistry [Izvestiya NAN RK. Seriya Khimicheskaya] 2(392):61-66. (In Russian)

12. Mentbayeva AA, Ospanova AK, Tashmuhambetova ZH, et al (2012) Langmuir 28:11948-11955. Crossref

13. Mentbayeva AA, Ospanova AK (2012) Eurasian Chem Technol J 14:169-176. Crossref

14. Salamone JC (1996) Polymeric Materials Encyclopedia 6(17):5476-5488.

15. Nair AKN., Jimenez AM, Sun SY (2017) J Phys Chem B 121(33):7987-7998. Crossref

16. Bekturov EA, Kudaibergenov SE (1989) J Macromol Sci-Pol R 26:281-295. Crossref

17. Kudaibergenov SE (2020) Pure Appl Chem 92(6):839-852. Crossref

18. Ulrich S, Seijo M, Carnal F, et al (2011) Macromolecules 44:1661-1670. Crossref

19. Kudaibergenov S, Nuraje N (2018) Polymers 10:1146. Crossref

20. Nakahata R, Yusa S-I (2018) Langmuir 35 (5):1690-1698. Crossref

21. Toleutay G, Su E, Kudaibergenov S et al (2020) Colloid Polym Sci 298:273-284. Crossref

22. Atta AM, Moustafa YM, Al-Lohedan HA, et al (2020) ACS Omega 5:2829-2842. Crossref

23. Ohlemacher A, Candau F, Munch JP, et al (1996) J Polym Sci Pol Lett 34(16):2747-2757. Crossref

24. Kudaibergenov SE (2020) Pure Appl Chem 92:839-858. Crossref

25. Kudaibergenov S (2020) Polym Advan Technol 32(3):906-918. Crossref

26. Kalidhasan S, Ben-Sasson M, Dror I et al (2017) Can J Chem Eng 95:343-352. Crossref

27. Fujita S, Shiratori S (2004) Jpn J Appl Phys 43:2346-2351. Crossref

28. Kim JH, Kim SH, Shiratori S (2004) Sensor Actuat B-Chem 102:241-247. Crossref

29. Decher G, Hong J (1991) Berichte der Bunsengesellschaft für physikalische Chemie 95:1430-1434. Crossref

30. Li Z, Pu X, Tao H, et al (2014) J Polym Eng 34(2):125-131. Crossref

31. Atta AM, Al-Hussain SA, Al-Lohedan HA, et al (2018) Nanomaterials 8(11):878-894. Crossref

32. Dehant I, Dants R, Kimmer V, Shmolke R (1976) Infrared spectroscopy of polymers [Infrakrasnaya spektroskopiya polimerov]. Khimiya, Moscow, USSR. (In Russian)

33. Ustyakina DR, Chevtaev AS, Tabunshchikov AI, et al (2019) Polym Sci Ser B+ 61(3):179-183. Crossref
Опубликован
2021-09-22
Как цитировать
Selenova, B., Ayazbayeva, A., Shakhvorostov, A., Kabdrakhmanova, S., Nauryzova, S., & Kudaibergenov, S. (2021). Получение и изучение физико-химических характеристик мультислойных полимерных композитов на основе стабилизированных поли(этиленимином) наночастиц меди и поли(2-акриламид-2-метил-1-пропансульфоната натрия). Вестник КазНУ. Серия химическая, 102(3), 22-31. https://doi.org/https://doi.org/10.15328/cb1235
Раздел
Органическая химия и химия полимеров