Synthesis of nanocomposite material through modification of graphene oxide by nanocellulose
Abstract
Intensive research of nanocomposites contributes to the development of new materials in the fields of medicine, nanoelectronics, energy, biotechnology, information technology. Therefore, the synthesis of new materials by modifying of graphene oxide (GO) with nanocellulose and the study of its properties are of great interest. In this study synthesized nanocomposite material by modifying of graphene oxide (GO) from activated carbon (BAU-A) in a 1:1 volume ratio with nanocellulose (NC) from hemp stems belonging to the annual plant, and their chemical structure was studied by FTIR and UV-spectroscopy. The results of the study showed the absorption of the etheric bond C = O in the UV spectrum at full length 243 nm. The IR spectrum showed all the new etheric bonds O = C - OH at a wavelength of 1625 cm-1. The average particle sizes of GO was 352 nm and NC was 470 nm in length and 80 nm in width. The SEM analysis indicating the NC as a contact layer between ultralow thicknesses of the GO layers. The XRD analysis indicated GO-NC composite film is a substance comprising GO and NC. According to the results, modification of graphene oxide showed that its scope can be expanded as much as possible.
References
2. Nayak J, Vashishtha A (2018) IJRAR 5(4):513-524. Crossref
3. Savitskyi DP, Makarov AS, Goncharuk VV (2016) Reports of the National Academy of Sciences of Ukraine 6:87-94. (In Russian). Crossref
4. Huang H, Ying Y, Peng X (2014) J Mater Chem A 2:13772-13782. Crossref
5. Yeh C, Raidongia K, Shao J, Yang Q, Huang J (2015) Nat Chem 7:166-170. Crossref
6. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, et al (2007) Carbon 45:1558-1565. Crossref
7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas K, et al (2006) Nature 442:282-286. Crossref
8. Wang L, Ye Y, Lu X, Wu Y, et al (2013) Electrochim Acta 114:223-232. Crossref
9. Si Y, Samulski ET (2008) Nano Lett 8:1679-1682. Crossref
10. Weng Z, Su Y, Wang DW, Li F, et al (2011) Adv Energy Mater 1(5):917-922. Crossref
11. Du X, Zhang Z, Liu W, Deng Y (2017) 35:299-320. Crossref
12. Wang N, Wang YF, Omer AM, Ouyang X (2017) Anal Bioanal Chem 409:6643-6653. Crossref
13. Tian SY, Guo JH, Zhao Ch, et al (2019) J Nanosci Nanotechno 19:2147-2153. Crossref
14. Akatan K, Kabdraxmanova SK, Imasheva AA, Abilev MB, Ibraeva JE, Kudaibergenov SE (2020) NNC RK Bulletin 1(81):35-38. (In Kazakh)
15. Marcano DC (2010) ACS Nano 4:4806-4814. Crossref
16. Peng L (2015) Nature Comm 6(1):5716. Crossref
17. Plermjai K, Boonyarattanakalin K, Mekprasart W, Pavasupree S, et al (2010) AIP Conference Proceedings 020005. Crossref
18. Sirvio JA, Visanko M, Heiskanen JP, Liimatainen H (2016) J Mater Chem A 4:6368-6375. Crossref
19. Szabo T, Berkesi O, Dekany I (2005) Carbon 43:3186-3189. Crossref
20. Shen L, Shen HS, Zhang CL (2010) Mater Design 31:4445-4449. Crossref
21. Wojtoniszaka MX, Chena RJ, Wajdab KA, et al (2012) Colloid Surface B 89:79-85. Crossref
22. Qi C, Yang L, Xu H, He S, Men Y (2017) J Colloid Interf Sci 486:84–96. Crossref
23. Tang G, Jiang ZG, Li X et al (2014) Carbon 77:592-599. Crossref
24. Kian LK, Jawaid M, Ariffin H, Alothman OY (2017) Int J Biol Macromol 103:931-940. Crossref
25. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Carbohyd Polym 103:119-125. Crossref
26. Liu P, Zhu C, Mathe A (2019) J Hazard Mater 371:484-493. Crossref
27. Compton OC, Jain B, Dikin DA, et al (2011) ACS Nano 5:4380-4391. Crossref
28. French AD (2014) Cellulose 21:885-896. Crossref
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.