Synthesis, structure and mechanical properties of composite hydrogels for medical use
Abstract
The mechanism of formation of slightly crosslinked composite hydrogels based on natural agar-agar polysaccharide, synthetic polymers for medical purposes – poly-N-vinylpyrrolidone (PVP) and low-molecular plasticizers (polyethylene glycol PEG-400 and glycerin) synthesized by electron irradiation was considered from the point of view of analyzing their mechanical characteristics under various types of applied efforts. It is established that the synthesis conditions and the component composition of the initial mixture determine the formed structure of the hydrogel compositions and their mechanical properties. A new interpretation of the formation of the structure of composite hydrogels in the presence of various plasticizers is given. A detailed analysis of the deformation curves of composite hydrogels is presented taking into account the elastic-elastic, highly elastic and forced-elastic states.
References
2 Papisov IM, Litmanovich AA (1995) Intermacromolecular Reactions in Macromolucular reactions series. John Wiley &Sons, Chichester, UK. P.283-344.
3 Pavlyuchenko VN, Ivanchev SS (2009) Polym Sci Ser A+ 51(7):743-760. (In Russian). Crossref
4 Mazalewska W, Czechowska-Biskup R, Olejnik AK, Wach RA, Ulanski P, Rosiak JM (2017) Radiat Phys Chem 134:1-7. Crossref
5 Irmukhametova GS, Shaikhutdinov EM, Rakhmetullayeva RK, Yermukhambetova BB, Ishanova AK, et al (2014) Adv Mat Res 875-877:1467-1471. Crossref
6 Feldstein MM, Bovaldinova KA, Sherstneva NE, Moscalets AP (2016) Advances in Materials Science Research 25:9-128.
7 Bekturov EA, Bimendina LA, Mamytbekov GK (2003) Complexes of water-soluble polymers and hydrogels. Gylym, Almaty, Kazakhstan. (In Russian)
8 Nicu R, Ciolacu F, Ciolacu DT (2021) Medical Applications Pharmaceutics 13:2-56.
9 Zagorets PA, Myshkin VE (1987) Radiation chemistry of polymers. Formation of polymers under the action of ionizing radiation [Radiatsionnaja Chimia polymerov. Obrazovanie polymerov pod deistviem ionizirujushego izluchenija]. RCTU, Moscow, USSR. (In Russian)
10 Mamytbekov G, Bouchal K, Ilavsky M (1999) Eur Polym J 35:1925-1933.
11 Ajji Z, Othman I, Rosiak JM (2005) Nuclear Instruments and Methods in Physics Research 229:375-380.
12 Mozalevska W, Czechowska-Biskup R, Olejnik AK, Wach RA, Ulanski P, Rosiak Janusz M (2017) Radiat Phys Chem 134:1-7.
13 Antsiferov EA, Kudryavtseva EV, Soboleva AA (2010) Bulletin of the Irkutsk State Technical University [Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta] 46:171-174. (In Russian)
14 Dumitriu S (2004) Polysaccharides: Structural diversity and functional versatility. CRC Press, USA. P.1224. ISBN 9780824754808
15 Shipunov BP, Markin VI (2020) Chemistry of plant raw materials [Khimiya rastitel’nogo syr’ya] 1:73-80. (In Russian). Crossref
16 Dorokhovich AN, Kohan EA, Bozhok AV (2014) Products and Ingredients [Produkty i ingredient] 5(113):22-24. (In Russian)
17 Bobrov DI (2020) Influence of the H-D isotope effect on radiation-induced transformations of aqueous solutions of glycerol [Vliyaniye izotopnogo H-D effekta na radiatsionno-indutsirovannyye prevrashcheniya vodnykh rastvorov glitserina]. Conference proceedings of the 77th scientific conference of students and graduate students of the Belarusian State University [77-ya nauchnaya konferentsiya studentov i aspirantov belorusskogo gosudarstvennogo universiteta], Minsk, Belarus. P.371-376. (In Russian)
18 Tager AA (1978) Physico-chemistry of polymers [Fiziko-khimiya polimerov]. Khimiya, Moscow, USSR. (In Russian)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.