Effect of the interaction of components in a nickel-molybdenum catalyst on its activity in decomposition of methane to hydrogen

Keywords: iron oxide, molybdenum oxide, methane, decomposition, hydrogen

Abstract

This work is devoted to the study of the activity of monometallic (Fe/Al2O3) and bimetallic (Fe-Mo/Al2O3) catalysts supported to carrier γ- Al2O3. It has been discovered that the bimetallic catalyst is more active than the monometallic catalyst in the methane decomposition reaction. The results of the influence of molybdenum oxide on the activity of Fe/Al2O3 catalyst in the methane decomposition reaction in the temperature range 500-850°C have been obtained. It has been determined that the addition of molybdenum oxide in the amount of 5 wt. % of the iron catalyst composition leads to an increase in the catalytic activity of the sample in the reaction of methanedecomposition to hydrogen at relatively low temperatures. Compared to Fe/Al2O3 on the FeMo/Al2O3 catalyst at a reaction temperature of 750°C, methane conversionincreases from 8% to 98%, hydrogen yield from 5% to 57%.

The increased field of activity Fe-Mo/Al2O3catalyst in the decomposition of methane to hydrogen compared to Fe/Al2O3 catalysts is due to an increase in the dispersity of the active phases of the catalyst, as well as the formation of an easily reduced Fe2(MоО4)3 phase, according to XRD, TPR-H2, and BET methods.

References

1 Zhang J, Li X, Chen H, Qi M, Zhang G, Hu H, Ma X (2017) Int J Hydrogen Energ 42:19755-19775. Crossref

2 Usman M, Daud MA, Abbas HF (2015) Renew Sust Energ Rev 45:710-744. Crossref

3 Osman AI (2020) Chem Eng Technol 43:641-648. Crossref

4 Chaubey R, Sahu S, James OO, Maity S (2013) Renew Sust Energ Rev 23:443-462. Crossref

5 Stephens-Romero S, Carreras-Sospedra M, Brouwer J, Dabdub D, Samuelsen S (2009) Environ Sci Technol 43:9022-9029. Crossref

6 Yergazieva G, Makayeva N, Shaimerden Zh, Soloviev S, elbayeva M, Akkazin E, Ahmetova F (2022) Bulletin of Chemical Reaction Engineering & Catalysis 17:1-12. Crossref

7 Ermakova MA, Ermakov DY, Kuvshinov GG (2000) Applied Catalysis A 201:61-70. Crossref

8 Zhang J, Jin L, Li Y, Hu H (2013) International Journal of Hydrogen Energy 38:3937-3947. Crossref

9 Serrano DP, Botas JA, Fierro JLG, Guil-López R, Pizarro P, Gómez G (2010) Origin of the catalytic activity of carbon materials 89:1241-1248. Crossref

10 Bai Z, Chen H, Li B, Li W (2007) Int J Hydrogen Energ 32:32-37. Crossref

11 Jin L, Si H, Zhang J, Lin P, Hu Z, Qiu B (2013) Int J Hydrogen Energ 38:1-8. Crossref

12 Awadallah AE, Aboul-Enein AA, Mahmoud AH, Abd El Rehim SS, El-Ziaty AK, Aboul-Gheit AK (2018) Int J Green Energy 15:568-576. Crossref

13 Christen HM, Puretzky AA, Cui H, Belay K, Fleming PH, Geohegan DB (2004) Nano Lett 10:1939-1942. Crossref

14 Hu M, Murakami Y, Ogura M, Maruyama S, Okubo T, (2004) J Catal 225:230-239. Crossref

15 Li Y, Zhang XB, Tao XY, Xu JM, Huang WZ, Luo JH, Luo ZQ, Li T, Liu F, Bao Y, Geise HJ (2005) Carbon 43:295-301. Crossref

16 Saito TW, Xu C, Ohshima S, Ago H, Yumura M, Iijima S (2006) Phys Chem B 12:5849-5853. Crossref

17 Huilin Y, Qiangqiang X, Shuliang L, Jiajia W, Yujun W, Guangsheng L (2022) Fuel 315:123262. Crossref

18 Dossumov K, Yergaziyeva G, Ermagambet B, Myltykbaeva L, Telbaeva M (2020) Russ J Phys Ch 94:880-882. Crossref

19 Shouchun M, Yang Y, Jiaqi L, Yuqing M, Yufeng Z, Jie W, Li L, Tongjie Y, Qingfeng Y (2022) Journal of Colloid and Interface Science 606:1800-1810. Crossref

20 Jing X, Tian W, Linga R, Da B, Gerard M, Jean-Marie B, Lu Zh (2020) Hydrogen Energy Publications 45:7981-8001. Crossref

21 Torres D, Pinilla JL, Lazaro MJ, Moliner R, Suelves I (2014) Hydrogen Energy Publications 39:3698-3709. Crossref

22 Jing X, Da B, Jean M, Lu Zh (2021) J Clean Prod 320:879-884. Crossref

23 Henao W, Cazaña F, Tarifa P, Romeo E, Latorre N, Sebastian V, Delgado J, Monzón A (2020) Chem Eng J 20:103-126. Crossref

24 Bayat N, Meshkani F, Rezaei M (2016) Int J Hydrog Energ 30:13039–13049. Crossref

25 Osipov A, Sidorchik I, Shlypin D, Borisov V, Leontieva N, Lacrenov A (2021) Catalysis in Industry 13:244-251. Crossref
Published
2022-08-16
How to Cite
Makayeva, N., Yergaziyeva, G., Anisova, M., Shaimerden, Z., & Dossumov, K. (2022). Effect of the interaction of components in a nickel-molybdenum catalyst on its activity in decomposition of methane to hydrogen. Chemical Bulletin of Kazakh National University, 106(3), 12-19. https://doi.org/https://doi.org/10.15328/cb1281