Optimization of headspace solid-phase microextraction of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics

Keywords: solid-phase microextraction, numerical modeling, COMSOL, soil analysis, volatile organic compounds, computational optimization

Abstract

Headspace solid-phase microextraction (HSSPME) is one of the simplest and cost-efficient sample preparation approaches for determination of volatile organic compounds (VOCs) in soil. This study was aimed at the development of the model for numerical optimization of HSSPME of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics (CMP). ‘Transport of Diluted Species in Porous Medium’ physics was used for modeling. Effect of sample mass, pressure, fiber-headspace and soil-headspace distribution constants on extraction profiles and time of 95% equilibrium has been studied using the developed model. Equilibrium extraction under atmospheric pressure (1 atm) can take up to 97 min, while under vacuum (0.0313 atm) – 2.3 min. Equilibration time under vacuum was 42-43 times lower than under 1 atm at all studied distribution constants and sample masses. The developed model was modified for optimization of pre-incubation time using ‘Transport of Diluted Species’ physics. According to the obtained plots, 95% equilibration time can reach 13.3 min and depends on both sample mass and soil-headspace distribution constant of the analyte. The developed model can be recommended for optimization of pressure, preincubation and extraction time when fiber-headspace and soil-headspace distribution constants, soil porosity and density are known.

Author Biography

Bulat Kenessov, Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty

Center of Physical Chemical Methods of Research and Analysis, Director

References

1 Souza-Silva ÉA, Jiang R, Rodriguez-Lafuente A, Gionfriddo E, Pawliszyn J (2015) TRAC-Trend Anal Chem 71:224–235. Crossref

2 Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, et al. (2021) Anal Chim Acta 1158:238108. Crossref

3 Durović RD, Dorđević TM, Santrić LR, Gasić SM, Ignjatović LM (2010) J Environ Sci Health B 45:626–632. Crossref

4 Doong RA, Liao PL (2001) J Chromatogr A 918:177–188. Crossref

5 Orazbayeva D, Koziel JA, Trujillo-Rodríguez MJ, Anderson JL, Kenessov B (2020) Microchem J. Crossref

6 Llompart M, Li K, Fingas M (1999) Talanta 48:451–459. Crossref

7 Alimzhanova M, Kenessov B, Nauryzbayev M, Koziel J (2012) Eurasian Chem Tech J 14:331–335. Crossref

8 Cam D, Gagni S (2001) J Chromatogr Sci 39:481–486. Crossref

9 Popiel S, Sankowska M (2011) J Chromatogr A 1218:8457–8479. Crossref

10 Rearden P, Harrington PB (2005) Anal Chim Acta 545:13–20. Crossref

11 Bakaikina N, Kenessov B, Ul’yanovskii N, Kosyakov DS (2018) Talanta 184:332–337. Crossref

12 Yegemova S, Bakaikina N, Kenessov B, Koziel J, Nauryzbayev M (2015) Talanta 143:226–233. Crossref

13 Baciocchi R, Attinà M, Lombardi G, Boni MR (2001) J Chromatogr A 911:135–141. Crossref

14 Yegemova SS, Derbissalin M, Kenessov BN, Koziel JA (2015) Chemical Bulletin of Kazakh National University 4–12. Crossref

15 Llompart M, Blanco B, Cela R (2000) Journal of Microcolumn Separations 12:25–32. Crossref

16 Ouyang G, Pawliszyn J (2006) Trends Anal Chem 25:692–703. Crossref

17 Pawliszyn J (2011) Trends Anal Chem 30:1363–1364. Crossref

18 Duan C, Shen Z, Wu D, Guan Y (2011) Trends Anal Chem 30:1568–1574. Crossref

19 Kenessov B, Koziel JA, Bakaikina N, Orazbayeva D (2016) Trends Anal Chem 75:111–122. Crossref

20 Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J (2010) Nat Protoc 5:122–139. Crossref

21 Pawliszyn J (2012) Handbook of Solid Phase Microextraction. Elsevier. Crossref

22 Niño LR, Grosseli GM, Mozeto AA, Fadini PS (2014) Analytical Methods 6:3247–3253. Crossref

23 Kenessov B, Derbissalin M, Koziel JA, Kosyakov DS (2019) Anal Chim Acta 1076:73–81. Crossref

24 Kenessov B, Koziel JA, Baimatova N, Demyanenko OP, Derbissalin M (2018) Molecules 23:2736. Crossref

25 Kapar A, Muratuly A, Orazbayeva D, Bakaikina N, Bukenov B, Kenessov B (2022) Anal Chim Acta 1195:339431. Crossref

26 Muratuly A, Kapar A, Kenessov B (2022) Advances in Sample Preparation 3:100030. Crossref

27 Jafari M, Jamshidian M, Habibi S (2022) J Chromatogr A 1673:463113. Crossref

28 Fuller EN, Schettler PD, Giddings JC (1966) Ind Eng Chem 58:18–27. Crossref

29 Mocho P, Desauziers V (2011) Anal Bioanal Chem 400:859–870. Crossref

30 Weil RR, Brady NC (2016) The Nature and Properties of Soils. Pearson.

31 Prikryl P, Sevcik JGK (2008) J Chromatogr A 1179:24–32. Crossref

32 Psillakis E, Yiantzi E, Sanchez-Prado L, Kalogerakis N (2012) Anal Chim Acta 742:30–36. Crossref

33 Yiantzi E, Kalogerakis N, Psillakis E (2015) Anal Chim Acta 890:108–116. Crossref

34 Zhakupbekova A, Baimatova N, Psillakis E, Kenessov B (2022) Environ Sci Pollut Res 29: 33645–33656. Crossref

35 Psillakis E (2020) Anal Bioanal Chem 412:5989–5997. Crossref

36 Zhakupbekova A, Baimatova N, Kenessov B (2019) Trends Environ Anal Chem 22:e00065. Crossref
Published
2022-10-19
How to Cite
Kenessov, B., & Kapar, A. (2022). Optimization of headspace solid-phase microextraction of volatile organic compounds from dry soil samples by porous coatings using COMSOL Multiphysics. Chemical Bulletin of Kazakh National University, 107(4), 4-12. https://doi.org/https://doi.org/10.15328/cb1300

Most read articles by the same author(s)