Mіnі-rеvіеw: Advаnсеs іn thе sуnthеsіs аnd bіоlоgісаl асtіvіtу оf bеnzоfurохаn аnd furохаn dеrіvаtіvеs

  • Mukhtar N. Zhаnаkоv L.N. Gumіlуоv Еurаsіаn Nаtіоnаl Unіvеrsіtу, Astаnа, Kаzаkhstаn
  • Zhanna K. Zhatkanbayeva L.N. Gumіlуоv Еurаsіаn Nаtіоnаl Unіvеrsіtу, Astаnа, Kаzаkhstаn
  • Elena A. Сhugunоvа Аrbuzоv Іnstіtutе оf Оrgаnіс аnd Рhуsісаl Сhеmіstrу, FRС Kаzаn Sсіеntіfіс Сеntеr, Russіаn Асаdеmу оf Sсіеnсеs, Kаzаn, Russіа
  • Nurgali I. Akylbekov Korkyt Ata Kyzylorda University, Laboratory of Engineering Profile "Physical and Chemical Methods of Analysis", Kyzylorda, Kazakhstan
  • Yerlan Ye. Zhаtkаnbауеv L.N. Gumіlуоv Еurаsіаn Nаtіоnаl Unіvеrsіtу, Astаnа, Kаzаkhstаn
Keywords: bеnzоfurохаn, furохаn, NО dоnоr, hеtеrосусlіс соmроunds, hуbrіd соmроunds, аntіbасtеrіаl рrореrtіеs, аntіvіrаl аnd аntіtumоr drugs

Abstract

Benzofuroxan and furoxan derivatives are heterocyclic compounds well known for their ability to act as nitric oxide (NO) donors. Due to their NO-releasing properties, these compounds have attracted considerable attention for their antimicrobial, antiviral, and antitumor activities. Their potential use in treating cardiovascular, gastrointestinal, and neurodegenerative disorders further underscores their pharmacological relevance. Given the increasing research interest in these compounds, there is a need to consolidate recent findings related to their chemical properties and biological potential. This mini-review aims to provide an up-to-date overview of the synthetic strategies and bioactivities of benzofuroxan and furoxan derivatives. Rather than focusing on ring synthesis, this review highlights the reactivity of side-chain functional groups and the design of hybrid molecules. Representative examples of drug-like compounds are discussed, along with their biological profiles. The review also explores emerging directions in the development of novel NO donors based on these frameworks with improved pharmaceutical efficacy and controlled NO release.

References

1 Rabelink AJ (1998) Ned Tijdschr Geneeskd 142:2828–30.

2 Gasco A, Boulton AJ (1981)In: Katritzky AR, Boulton AJ (eds) Furoxans and Benzofuroxans, Adv. Heterocycl. Chem. Academic Press, London, pp 251–340. https://doi.org/https://doi.org/10.1016/S0065-2725(08)60789-8

3 N.B.Grigoriev VGG (2004) Oxid Azota (NO): Novyi put’ k Poisku Lekarstv [Nitric Oxide (NO): New Approach to Drug Search]. University Book, Moscow.

4 Fershtat LL, Makhova NN (2017) ChemMedChem 12:622–638. https://doi.org/10.1002/cmdc.201700113

5 Gasco A, Fruttero R, Sorba G, Di Stilo A, Calvino R (2004) Pure Appl Chem 76:973–981. https://doi.org/10.1351/pac200476050973

6 Cerecetto H, González M (2007) Benzofuroxan and Furoxan. Chemistry and Biology. pp 265–308. https://doi.org/10.1007/7081_2007_064

7 Medana C, Di Stilo A, Visentin S, Fruttero R, Gasco A, Ghigo D, et al. (1999) Pharm Res 16:956–60. http://dx.doi.org/10.1023/a:1018974409622

8 Abu Yousef M, Matsubara R (2023) RSC Adv 13:5228–5248. http://dx.doi.org/10.1039/D3RA00189J

9 Mallory FB, Cammarata A (1966) J Am Chem Soc 88:61–64. http://dx.doi.org/10.1021/ja00953a012

10 Ferioli R, Folco GC, Ferretti C, Gasco AM, Medana C, Fruttero R, et al. (1995) Br J Pharmacol 114:816–820. http://dx.doi.org/10.1111/j.1476-5381.1995.tb13277.x

11 R.Calvino, V.Mortarini, A.Gasco MAB and MLR (1977) Synth Antimicrob Act 12:157–159.

12 Cerecetto H, Porcal W (2005) Mini-Reviews Med Chem 5:57–71. http://dx.doi.org/10.2174/1389557053402864

13 J.Stevens, M. Schweizer GR (2001)Some recent studies on benzofuraxansJournal of the American Chemical Society 123:

14 Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, et al. (2011) Antioxid Redox Signal 14:1659–1674. http://dx.doi.org/10.1089/ars.2010.3841

15 Zavarzina O V., Rakitin OA, Khmel’nitskii LI (1994) Mendeleev Commun 4:135. http://dx.doi.org/10.1070/MC1994v004n04ABEH000384

16 Sebban M, Goumont R, Hallé JC, Terrier F, Marrot J (1999) Chem Commun 1009–1010. http://dx.doi.org/10.1039/a902170a

17 Y.Fukai, T.Miyazawa, M.Kojoh, T.Takabatake MH (2001) JHeterocyclChem 38:531–534.

18 David M. Jameson and Shan S. Wong (2011) Chemistry of Protein and Nucleic Acid Cross-Linking and Conjugation.

19 Kumar S, Arora A, Chaudhary R, Kumar R, Len C, Mukherjee M, et al. (2024) Top Curr Chem 382:34. http://dx.doi.org/10.1007/s41061-024-00476-7

20 Bohn H, Brendel J, Martorana PA, Schönafinger K (1995) Br J Pharmacol 114:1605–1612. http://dx.doi.org/10.1111/j.1476-5381.1995.tb14946.x

21 Ustyuzhanina NE, Fershtat LL, Gening ML, Nifantiev NE, Makhova NN (2018) Mendeleev Commun 28:49–51. http://dx.doi.org/10.1016/j.mencom.2018.01.016

22 Civelli M, Giossi M, Caruso P, Razzetti R, Bergamaschi M, Bongrani S, et al. (1996) Br J Pharmacol 118:923–928. http://dx.doi.org/10.1111/j.1476-5381.1996.tb15487.x

23 Wang PG, Bill Cai T, Taniguchi N (2005) Nitric Oxide Donors. Wiley. http://dx.doi.org/10.1002/3527603751

24 Fershtat LL, Makhova NN (2017) ChemMedChem 12:622–638. http://dx.doi.org/10.1002/cmdc.201700113

25 Burov ON, Kletskii ME, Fedik NS, Lisovin A V, Kurbatov S V (2015) Chem Heterocycl Compd 51:951–960. http://dx.doi.org/10.1007/s10593-016-1804-z

26 Chugunova EAA, Gazizov ASS, Burilov ARR, Yusupova LMM, Pudovik MAA, Sinyashin OGG (2019) Russ Chem Bull 68:887–910. http://dx.doi.org/10.1007/s11172-019-2503-6

27 Zhilin ES, Fershtat LL, Bystrov DM, Kulikov AS, Dmitrienko AO, Ananyev I V., et al. (2019) European J Org Chem 2019:4248–4259. http://dx.doi.org/10.1002/ejoc.201900622

28 Zhilin ES, Polkovnichenko MS, Ananyev I V., Fershtat LL, Makhova NN (2020) ChemPhotoChem 4:5346–5354. http://dx.doi.org/10.1002/cptc.202000157

29 Garipov MR, Nikitina EV, Petukhov AS, Shtyrlin YuG, Strelnik AD (2013) Antibacterial compounds based on sulfanilic acid and pyridoxine [Antibakterial’nye soedineniya na osnove sul’fanilovoy kisloty i piridoksina]. Patent of the Russian Federation RF Patent 2480471, Int. Cl. C07D491/052. Published 27.04.2013. (In Russian)

30 Serkov IV, Bezuglov VV (2009) Uspekhi Khimii [Russian Chemical Reviews] 78:442–465. (In Russian)

31 Katritzky AR, Gordeev MF (1993) Heterocycles 35:483–518. http://dx.doi.org/10.3987/REV-92-SR2

32 Ghosh P, Ternai B, Whitehouse M (1981) Med Res Rev 1:159–187. http://dx.doi.org/10.1002/med.2610010203

33 Fernandes GFS, Campos DL, Da Silva IC, Prates JLB, Pavan AR, Pavan FR, et al. (2021) ChemMedChem 16:1268–1282. http://dx.doi.org/10.1002/cmdc.202000899

34 Fedik NS, Kletskii ME, Burov ON, Lisovin AV, Kurbatov SV, Chistyakov VA, et al. (2019) Nitric Oxide 93:15–24. http://dx.doi.org/10.1016/j.niox.2019.08.007

35 Chugunova E, Frenna V, Consiglio G, Micheletti G, Boga C, Akylbekov N, et al. (2020) J Org Chem 85:13472–13480. https://doi.org/10.1021/acs.joc.0c01502

36 Sema L Ioffe (2007) “Nitronates”, Nitrile Oxides Nitrones and Nitronates in Organic Synthesis. Ed. by Henry Feuer. A John Wiley & Sons, Inc., Publication, Canada.

37 Chugunova E, Micheletti G, Telese D, Boga C, Islamov D, Usachev K, et al. (2021) Int J Mol Sci 22:7497. https://doi.org/10.3390/ijms22147497

38 Ustyuzhanina NE, Fershtat LL, Gening ML, Nifantiev NE, Makhova NN (2016) Mendeleev Commun 26:513–515. https://doi.org/10.1016/j.mencom.2016.11.018

39 Orlandi VT, Bolognese F, Rolando B, Guglielmo S, Lazzarato L, Fruttero R (2018) Microbiology 164:1557–1566. https://doi.org/10.1099/mic.0.000730

40 Fei Y, Wu J, An H-W, Zhu K, Peng B, Cai J, et al. (2020) J Med Chem 63:9127–9135. https://doi.org/10.1021/acs.jmedchem.9b01832

41 Huang LY, Tsui DY, Williams CM, Wyse BD, Smith MT (2015) Clin Exp Pharmacol Physiol 42:921–929. http://dx.doi.org/10.1111/1440-1681.12442

42 Makhova NN, Fershtat LL (2018) Tetrahedron Lett 59:2317–2326. http://dx.doi.org/10.1016/j.tetlet.2018.04.070

43 Pippin AB, Mohd Arshad ZH, Voll RJ, Nye JA, Ghassabian S, Williams CM, et al. (2016) ACS Med Chem Lett 7:563–567. http://dx.doi.org/10.1021/acsmedchemlett.5b00410

44 Huang L, Wyse BD, Williams CM, Smith MT (2019) Clin Exp Pharmacol Physiol 46:676–685. http://dx.doi.org/10.1111/1440-1681.13091

45 Schiefer IT, VandeVrede L, Fa’ M, Arancio O, Thatcher GRJ (2012) J Med Chem 55:3076–3087. http://dx.doi.org/10.1021/jm201504s

46 de Carvalho PS, Maróstica M, Gambero A, Pedrazzoli J (2010) Eur J Med Chem 45:2489–2493. http://dx.doi.org/10.1016/j.ejmech.2010.02.034

47 Chugunova E, Matveeva V, Tulesinova A, Iskanderov E, Akylbekov N, Dobrynin A, et al. (2022)Int J Mol Sci. http://dx.doi.org/10.3390/ijms232314902

48 Chugunova EA, Burilov AR (2017) Curr Top Med Chem 17:986–1005. http://dx.doi.org/10.2174/1568026616666160927145822

49 dos Santos Fernandes GF, de Souza PC, Marino LB, Chegaev K, Guglielmo S, Lazzarato L, et al. (2016) Eur J Med Chem 123:523–531. http://dx.doi.org/https://doi.org/10.1016/j.ejmech.2016.07.039

50 Zhang Z, Bai Z-W, Ling Y, He L-Q, Huang P, Gu H-X, et al. (2018) Med Chem Res 27:1198–1205. http://dx.doi.org/10.1007/s00044-018-2140-x

51 Abdelall EKA (2020) Bioorg Chem 94:103441. http://dx.doi.org/https://doi.org/10.1016/j.bioorg.2019.103441

52 Fershtat L, Bystrov D, Zhilin E, Makhova N (2019) Synthesis (Stuttg) 51:747–756. http://dx.doi.org/10.1055/s-0037-1611056

53 Chugunova E, Gibadullina E, Matylitsky K, Bazarbayev B, Neganova M, Volcho K, et al. (2023) Pharmaceuticals 16:499. http://dx.doi.org/10.3390/ph16040499

54 Sotgia F, Martinez-Outschoorn UE, Lisanti MP (2011) BMC Med 9:62. https://doi.org/10.1186/1741-7015-9-62

55 Smolobochkin A, Gazizov A, Sazykina M, Akylbekov N, Chugunova E, Sazykin I, et al. (2019) Molecules 24:3086. https://doi.org/10.3390/molecules24173086

56 Chugunova E, Matveeva V, Tulesinova A, Iskanderov E, Akylbekov N, Dobrynin A, et al. (2022) Int J Mol Sci 23:14902. https://doi.org/10.3390/ijms232314902

57 Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA (2020) Int J Mol Sci 21:9393. https://doi.org/10.3390/ijms21249393

58 Shpakovsky DB, Banti CN, Mukhatova EM, Gracheva YA, Osipova VP, Berberova NT, et al. (2014) Dalt Trans 43:6880–6890. https://doi.org/10.1039/C3DT53469C

59 Wang L, Li C, Zhang Y, Qiao C (2013) J Agric Food Chem 61:8632−8640. https://doi.org/10.1021/jf402388x

60 Bogdanov AV, Iskhakova KR, Voloshina AD, Sapunova AS, Kulik NV, Terekhova NV, et al. (2020) Chem Biodivers 17: e2000147. https://doi.org/10.1002/cbdv.202000147

61 de Giacometi M, Mayer JCP, de Mello AB, Islabão YW, Strothmann AL, da Fonseca RN, et al. (2023) Exp Parasitol 253:108601. https://doi.org/10.1016/j.exppara.2023.108601

62 Gala UH, Miller DA, Williams RO (2020) Biochim Biophys Acta - Rev Cancer 1873:188319. https://doi.org/10.1016/j.bbcan.2019.188319

63 DIMITRIOS B (2006) Trends Food Sci Technol 17:505–512. https://doi.org/10.1016/j.tifs.2006.04.004

64 Truong DH, Tran TH, Ramasamy T, Choi JY, Choi H-G, Yong CS, et al. (2015) Powder Technol 283:260–265. https://doi.org/10.1016/j.powtec.2015.04.044

65 Boudou-Rouquette P, Ropert S, Mir O, Coriat R, Billemont B, Tod M, et al. (2012) Oncologist 17:1204–1212. https://doi.org/10.1634/theoncologist.2011-0439

66 Boudou-Rouquette P, Narjoz C, Golmard JL, Thomas-Schoemann A, Mir O, Taieb F, et al. (2012) PLoS One 7:1–9. https://doi.org/10.1371/journal.pone.0042875

67 Zhanakov MN, Matveeva VI, Akylbekov NI, Chugunova EA, Khamatgalimov AR, Burilov AR, et al. (2023) Russ J Gen Chem 93:S491–S500. https://doi.org/10.1134/S1070363223150112
Published
2025-04-05
How to Cite
ZhаnаkоvM., Zhatkanbayeva, Z., СhugunоvаE., Akylbekov, N., & ZhаtkаnbауеvY. (2025). Mіnі-rеvіеw: Advаnсеs іn thе sуnthеsіs аnd bіоlоgісаl асtіvіtу оf bеnzоfurохаn аnd furохаn dеrіvаtіvеs. Chemical Bulletin of Kazakh National University, 114(1). https://doi.org/https://doi.org/10.15328/cb1391