Synthesis, electronic and emission spectroscopy of diphenylamine-azulene co-oligomers
Abstract
New strategies for creating functional materials are of great interest for the further development of optoelectronic devices such as organic field-effect transistors (OFETs), organic light emitting diodes (OLEDs), dye-sensitized organic solar cells (DSSCs) and others. In this area, research has focused on the application of various building blocks that can fine-tune the electronic structure of materials to optimize the fabrication performance and morphology. To date, the most effective molecules as building block are aromatic hydrocarbons, for example azulenes.
In this study, new conjugated diphenylamine-azulene co-oligomers with linear and branched structures were synthesized with high yields via the Suzuki–Miyaura cross-coupling reaction. The obtained co-oligomers exhibit a pronounced ability to absorb and emit visible light in the 400–700 nm range. It was demonstrated that these unique photophysical properties, particularly the intense emissions in the green and orange photoluminescence range, result from the electron-donating properties of diphenylamine groups and the expansion of π-conjugation, which significantly alters the electronic structure of azulene, including the levels and energy gaps of the frontier HOMO-LUMO orbitals. These findings provide a rational approach to designing a series of new conjugated co-oligomers based on diphenylamine-azulenes for optoelectronic and photonic devices.
References
2 Duan C, Huang F, Cao Y (2012) J Mater Chem 22:10416. Crossref
3 Lash TD, El-Beck JA, Ferrence GM (2007) J Org Chem 72:8402–8415. Crossref
4 Wakabayashi S, Kato Y, Mochizuki K, Suzuki R, Matsumoto M, Sugihara Y, et al. (2007) J Org Chem 72:744–749. Crossref
5 Amatatsu Y (2007) J Phys Chem A 111:5327–5332. Crossref
6 Peart PA, Repka LM, Tovar JD (2008) European J Org Chem 2008:2193–2206. Crossref
7 Shoji T, Ito S, Toyota K, Yasunami M, Morita N (2008) Chemistry – A European Journal 14:8398–8408. Crossref
8 Ito S, Kubo T, Morita N, Ikoma T, Tero-Kubota S, et al. (2005) J Org Chem 70:2285–2293. Crossref
9 Colby DA, Ferrence GM, Lash TD (2004) Angewandte Chemie International Edition 43:1346–1349. Crossref
10 Varshney R, Agashe C, Gill AK, Alam M, Joseph R, Patra D (2021) Chemical Communications 57:10604–10607. Crossref
11 Xin H, Hou B, Gao X (2021) Acc Chem Res 54:1737–1753. Crossref
12 Anderson AG, Steckler BM (1959) J Am Chem Soc 81:4941–4946. Crossref
13 Tomin VI, Włodarkiewicz A (2018) J Lumin 198:220–225. Crossref
14 Nenov A, Borrego-Varillas R, Oriana A, Ganzer L, Segatta F, Conti I, et al. (2018) J Phys Chem Lett 9:1534–1541. Crossref
15 del Valle JC, Catalán J (2019) Physical Chemistry Chemical Physics 21:10061–10069. Crossref
16 Behera SK, Park SY, Gierschner J (2021) Angewandte Chemie International Edition 60:22624–22638. Crossref
17 Dunlop D, Ludvíková L, Banerjee A, Ottosson H, Slanina T (2023) J Am Chem Soc 145:21569–21575. Crossref
18 Wang F, Lai Y-H (2003) Macromolecules 36:536–538. Crossref
19 Wang F, Lai Y-H, Han M-Y (2004) Macromolecules 37:3222–3230. Crossref
20 Mrozek T, Görner H, Daub J (2001) Chemistry (Easton) 7:1028–1040. Crossref
21 Dong J-X, Zhang H-L (2016) Chinese Chemical Letters 27:1097–1104. Crossref
22 Ou L, Zhou Y, Wu B, Zhu L (2019) Chinese Chemical Letters 30:1903–1907. Crossref
23 Kurotobi K, Kim KS, Noh SB, Kim D, Osuka A (2006) Angewandte Chemie International Edition 45:3944–3947. Crossref
24 Cristian L, Sasaki I, Lacroix PG, Donnadieu B, Asselberghs I, Clays K, et al. (2004) Chemistry of Materials 16:3543–3551. Crossref
25 Ito S, Inabe H, Morita N, Ohta K, Kitamura T, Imafuku K (2003) J Am Chem Soc 125:1669–1680. Crossref
26 Yamaguchi Y, Takubo M, Ogawa K, Nakayama K, Koganezawa T, Katagiri H (2016) J Am Chem Soc 138:11335–11343. Crossref
27 Nishimura H, Ishida N, Shimazaki A, Wakamiya A, Saeki A, Scott LT, et al. (2015) J Am Chem Soc 137:15656–15659. Crossref
28 Zhou Y, Zou Q, Qiu J, Wang L, Zhu L (2018) J Phys Chem Lett 9:550–556. Crossref
29 Zhou Y, Zhu L (2018) Chemistry – A European Journal 24:10306–10309. Crossref
30 Konishi A, Yasuda M (2021) Chem Lett 50:195–212. Crossref
31 Xin H, Hou B, Gao X (2021) Acc Chem Res 54:1737–1753. Crossref
32 Shevyakov S V., Li H, Muthyala R, Asato AE, Croney JC, Jameson DM, et al. (2003) J Phys Chem A 107:3295–3299. Crossref
33 Fujinaga M, Murafuji T, Kurotobi K, Sugihara Y (2009) Tetrahedron 65:7115–7121. Crossref

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.