Synthesis, electronic and emission spectroscopy of diphenylamine-azulene co-oligomers

Keywords: azulene, diphenylamine-azulenes, azulene co-oligomers, cross-coupling, electronic spectra, fluorescence

Abstract

New strategies for creating functional materials are of great interest for the further development of optoelectronic devices such as organic field-effect transistors (OFETs), organic light emitting diodes (OLEDs), dye-sensitized organic solar cells (DSSCs) and others. In this area, research has focused on the application of various building blocks that can fine-tune the electronic structure of materials to optimize the fabrication performance and morphology. To date, the most effective molecules as building block are aromatic hydrocarbons, for example azulenes.
In this study, new conjugated diphenylamine-azulene co-oligomers with linear and branched structures were synthesized with high yields via the Suzuki–Miyaura cross-coupling reaction. The obtained co-oligomers exhibit a pronounced ability to absorb and emit visible light in the 400–700 nm range. It was demonstrated that these unique photophysical properties, particularly the intense emissions in the green and orange photoluminescence range, result from the electron-donating properties of diphenylamine groups and the expansion of π-conjugation, which significantly alters the electronic structure of azulene, including the levels and energy gaps of the frontier HOMO-LUMO orbitals. These findings provide a rational approach to designing a series of new conjugated co-oligomers based on diphenylamine-azulenes for optoelectronic and photonic devices.

References

1 Zaumseil J, Sirringhaus H (2007) Chem Rev 107:1296–1323. Crossref

2 Duan C, Huang F, Cao Y (2012) J Mater Chem 22:10416. Crossref

3 Lash TD, El-Beck JA, Ferrence GM (2007) J Org Chem 72:8402–8415. Crossref

4 Wakabayashi S, Kato Y, Mochizuki K, Suzuki R, Matsumoto M, Sugihara Y, et al. (2007) J Org Chem 72:744–749. Crossref

5 Amatatsu Y (2007) J Phys Chem A 111:5327–5332. Crossref

6 Peart PA, Repka LM, Tovar JD (2008) European J Org Chem 2008:2193–2206. Crossref

7 Shoji T, Ito S, Toyota K, Yasunami M, Morita N (2008) Chemistry – A European Journal 14:8398–8408. Crossref

8 Ito S, Kubo T, Morita N, Ikoma T, Tero-Kubota S, et al. (2005) J Org Chem 70:2285–2293. Crossref

9 Colby DA, Ferrence GM, Lash TD (2004) Angewandte Chemie International Edition 43:1346–1349. Crossref

10 Varshney R, Agashe C, Gill AK, Alam M, Joseph R, Patra D (2021) Chemical Communications 57:10604–10607. Crossref

11 Xin H, Hou B, Gao X (2021) Acc Chem Res 54:1737–1753. Crossref

12 Anderson AG, Steckler BM (1959) J Am Chem Soc 81:4941–4946. Crossref

13 Tomin VI, Włodarkiewicz A (2018) J Lumin 198:220–225. Crossref

14 Nenov A, Borrego-Varillas R, Oriana A, Ganzer L, Segatta F, Conti I, et al. (2018) J Phys Chem Lett 9:1534–1541. Crossref

15 del Valle JC, Catalán J (2019) Physical Chemistry Chemical Physics 21:10061–10069. Crossref

16 Behera SK, Park SY, Gierschner J (2021) Angewandte Chemie International Edition 60:22624–22638. Crossref

17 Dunlop D, Ludvíková L, Banerjee A, Ottosson H, Slanina T (2023) J Am Chem Soc 145:21569–21575. Crossref

18 Wang F, Lai Y-H (2003) Macromolecules 36:536–538. Crossref

19 Wang F, Lai Y-H, Han M-Y (2004) Macromolecules 37:3222–3230. Crossref

20 Mrozek T, Görner H, Daub J (2001) Chemistry (Easton) 7:1028–1040. Crossref

21 Dong J-X, Zhang H-L (2016) Chinese Chemical Letters 27:1097–1104. Crossref

22 Ou L, Zhou Y, Wu B, Zhu L (2019) Chinese Chemical Letters 30:1903–1907. Crossref

23 Kurotobi K, Kim KS, Noh SB, Kim D, Osuka A (2006) Angewandte Chemie International Edition 45:3944–3947. Crossref

24 Cristian L, Sasaki I, Lacroix PG, Donnadieu B, Asselberghs I, Clays K, et al. (2004) Chemistry of Materials 16:3543–3551. Crossref

25 Ito S, Inabe H, Morita N, Ohta K, Kitamura T, Imafuku K (2003) J Am Chem Soc 125:1669–1680. Crossref

26 Yamaguchi Y, Takubo M, Ogawa K, Nakayama K, Koganezawa T, Katagiri H (2016) J Am Chem Soc 138:11335–11343. Crossref

27 Nishimura H, Ishida N, Shimazaki A, Wakamiya A, Saeki A, Scott LT, et al. (2015) J Am Chem Soc 137:15656–15659. Crossref

28 Zhou Y, Zou Q, Qiu J, Wang L, Zhu L (2018) J Phys Chem Lett 9:550–556. Crossref

29 Zhou Y, Zhu L (2018) Chemistry – A European Journal 24:10306–10309. Crossref

30 Konishi A, Yasuda M (2021) Chem Lett 50:195–212. Crossref

31 Xin H, Hou B, Gao X (2021) Acc Chem Res 54:1737–1753. Crossref

32 Shevyakov S V., Li H, Muthyala R, Asato AE, Croney JC, Jameson DM, et al. (2003) J Phys Chem A 107:3295–3299. Crossref

33 Fujinaga M, Murafuji T, Kurotobi K, Sugihara Y (2009) Tetrahedron 65:7115–7121. Crossref
Published
2025-03-31
How to Cite
Merkhatuly, N., Iskanderov, A., Abeuova, S., Iskanderov, A., Kadirberlina, G., Seitkan, A., & Kemelbekova, A. (2025). Synthesis, electronic and emission spectroscopy of diphenylamine-azulene co-oligomers. Chemical Bulletin of Kazakh National University, 114(1), 12-21. https://doi.org/https://doi.org/10.15328/cb1397

Most read articles by the same author(s)