Radiant-and-plasma technology for coal processing
Abstract
Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.
References
1. 2012 Key World Energy Statistics. International Energy Agency (IEA): OECD/IEA. – 2012. – 80 p.
2. Мессерле В.Е., Устименко А.Б. Плазменное воспламенение и горение твердого топлива. (Научно-технические основы). - Saarbrucken, Germany: Palmarium Academic Publishing (ISBN: 978-3-8473-9845-5), 2012. – 404 с.
3. Мессерле В.Е., Устименко А.Б. Плазмохимические технологии переработки топлив // Известия вузов. Химия и химическая технология, 2012. – Т. 55. – Вып. 4. – С. 30-34.
4. Galvita V., Messerle V.E., Ustimenko A.B. Hydrogen production by coal plasma gasification for fuel cell technology // International Journal of Hydrogen Energy. – Vol. 32. – Issue 16. – 2007. – P. 3899-3906.
5. Messerle V.E., Ustimenko A.B. Solid Fuel Plasma Gasification // Advanced Combustion and Aerothermal Technologies, N.Syred and A.Khalatov (eds.). – Springer. – 2007. – P.141-156.
6. Мессерле В.Е., Устименко А.Б., Лукьященко В.Г. Плазменная ресурсо- и энергосберегающая технология комплексной переработки твердых топлив. // Доклады XI Всероссийской научно-практической конференции «Техника и технология производства теплоизоляционных материалов из минерального сырья», 6-8 июня 2012 года (г. Бийск, Алтайского края). – Изд-во Алтайского Государственного Технического Университета им. И.И. Ползунова. – С. 158-160.
7. Gorokhovski M., Karpenko E.I., Lockwood F.C., Messerle V.E., Trusov B.G., Ustimenko A.B. Plasma technologies for solid fuels: experiment and theory // Journal of the Energy Institute, 2005. – №78 (4). – P. 157-171.
8. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных неорганических системах. – М.: Металлургия, 1994. – 352 с.
9. Карпенко Е.И., Мессерле В.Е. Плазменно-энергетические технологии топливоиспользования. Т.1. Концепция и расчетно-теоретические исследования плазменно-энергетических технологий. Новосибирск: Наука, Сиб. предприятие РАН, 1998. – 385 с.
10. Сакипов З.Б., Мессерле В.Е., Ибраев Ш.Ш. Электротермохимическая подготовка углей к сжиганию. – Алматы: Ғылым (Наука), 1993. – 259 с.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.