Data analyses by partial order methodology
Abstract
The present paper reviews data analysis applying partial order methodology. Hence, in addition to a short introduction to the basics of partial ordering a series of central tools of partial order methodology is presented and discussed based on exemplary studies applying a dataset comprising 12 obsolete pesticides characterized by their environmental persistence, bioaccumulation and toxicity.
Partial orders are often visualized by the so-called Hasse diagrams where the characteristics of partial ordering immediately become evident through the structure of the diagrams by levels, chains and antichains. Especially the presence of incomparabilities due to conflicting indicator values calls for attention.
The paper presents tools to a) estimate the relative importance of the single indicators applied, b) disclose the presence of so-called ‘peculiar’ objects that have one or more unexpected high or low indicator values, c) calculate the average order of the single element as partial ordering a priori does not lead to an absolute ordering that often is wanted, d) apply various weighting regimes in order to qualify the ordering, and e) disclose and visualize the actual nature of the incomparabilities that are in inherent part of partial ordering.
References
1 Annoni P, Bruggemann R, Carlsen L (2015) J Appl Stat 42:535-554. http://dx.doi.org/10.1080/02664763.2014.978269
2 Borken J (2005) Umweltindikatoren als ein Instrument der Technikfolgenabschätzung - Selektion, Aggregation und multikriterielle Bewertung am Beispiel des Verkehrs. Fakultät für Angewandte Wissenschaften. Universität Freiburg/Breisgau. PhD-Thesis, pp. 153.
3 Brans JP, Vincke PH (1985) Manage Sci 31:647-656. http://dx.doi.org/10.1287/mnsc.31.6.647
4 Bruggemann R, Annoni P (2014) MATCH Communications in Mathematical and in Computer Chemistry 71:117-142.
5 Bruggemann R, Carlsen L (2006) Partial order in environmental sciences and chemistry, Springer, Berlin, Germany. ISBN 978-3-540-33968-7. http://dx.doi.org/10.1007/3-540-33970-1
6 Bruggemann R, Carlsen L (2006) Introduction to partial order theory exemplified by the evaluation of sampling sites, In: Partial Order in Environmental Sciences and Chemistry, R. Bruggemann and L. Carlsen, eds, Springer, Berlin. P.61-110. ISBN 978-3-540-33968-7
7 Bruggemann R, Carlsen L (2011) MATCH Communications in Mathematical and in Computer Chemistry 65:383-414.
8 Bruggemann R, Carlsen L (2012) Sci Total Environ 425:293-295. http://dx.doi.org/10.1016/j.scitotenv.2012.02.062
9 Bruggemann R, Carlsen L (2014) MATCH Communications in Mathematical and in Computer Chemistry 71:694-716.
10 Bruggemann R, Carlsen L (2015) MATCH Communications in Mathematical and in Computer Chemistry 73:277-302
11 Bruggemann R, Carlsen L (2015) MATCH Communications in Mathematical and in Computer Chemistry (Submitted for publication)
12 Bruggemann R, Carlsen L, Voigt K, Wieland R (2014) PyHasse Software for Partial Order Analysis, In: Bruggemann R, Carlsen L, Wittmann J, eds, Multi-Indicator Systems and Modelling in Partial Order. Springer, New York, USA. P.389-423. ISBN 978-1-4614-8223-9
13 Bruggemann R, Halfon E, Welzl G, Voigt K, Steinberg CEW (2001) J Chem Inf Comp Sci 41:918-925. http://dx.doi.org/10.1021/ci000055k
14 Brüggemann R, Münzer B (1993) Chemosphere 27:1729-1736. http://dx.doi.org/10.1016/0045-6535(93)90153-V
15 Bruggemann R, Patil GP (2011) Ranking and prioritization for multi-indicator systems - Introduction to partial order applications. Springer, New York, USA. http://dx.doi.org/10.1007/978-1-4419-8477-7
16 Brüggemann R, Restrepo G, Voigt K, Annoni P (2013) MATCH Communications in Mathematical and in Computer Chemistry 69:413-432.
17 Brüggemann R, Sørensen PB, Lerche D, Carlsen L (2004) J Chem Inf Comp Sci 44:618-625. http://dx.doi.org/10.1021/ci034214m
18 Brüggemann R, Voigt K (1995) Chemosphere 31:3585-3594. http://dx.doi.org/10.1016/0045-6535(95)00207-O
19 Bruggemann R, Voigt K (2011) MATCH Communications in Mathematical and in Computer Chemistry 66:231-251.
20 Carlsen L (2015) AIMS Environm Sci 2:110-121. http://dx.doi.org/10.3934/environsci.2015.1.110
21 Carlsen L, Bruggemann R (2015) Partial Ordering and Metrology Analyzing Analytical Performance, Submitted for publication.
22 Colorni A, Paruccini M, Roy B (2001) A-MCD-A, Aide Multi Critere a la Decision, Multiple Criteria Decision Aiding. JRC European Commission, Ispra, Italy.
23 De Loof K, De Meyer H, De Baets B (2006) Fund Inform 71:309-321.
24 European Commission (2006) Regulation No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC; Article 57d,e (http://www.reach-compliance.eu/greek/legislation/docs/launchers/launch-2006-1907-EC-06.html; Accessed Mar. 2015)
25 Ernesti J, Kaiser P (2008) Python - Das umfassende Handbuch. Galileo Press, Bonn, Germany.
26 Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis, State of the art surveys. Springer, Boston, USA. http://dx.doi.org/10.1007/b100605
27 Hasse H (1967) Vorlesungen über Klassenkörpertheorie. Physica-Verlag, Marburg, Germany.
28 Hetland ML (2005) Beginning Python - From Novice to professional. Apress, Berkeley, USA.
29 Lerche D, Brüggemann R, Sørensen P, Carlsen L, Nielsen OJ (2002) J Chem Inf Comp Sci 42:1086-1098. http://dx.doi.org/10.1021/ci010268p
30 Lerche D, Sørensen PB, Brüggemann R (2003) J Chem Inf Comp Sci 43:1471-1480. http://dx.doi.org/10.1021/ci0300036
31 Morton J, Pachter L, Shiu A, Sturmfels B, Wienand O (2009) Siam J Discrete Math 23:1117-1134. http://dx.doi.org/10.1137/080715822
32 Munda G (2008) Social Multi-Criteria Evaluation for a Sustainable Economy. Springer-Verlag, Berlin, Germany. http://dx.doi.org/10.1007/978-3-540-73703-2
33 Python (2015) Python software. https://www.python.org/ (assessed Jan. 2015).
34 R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., ISBN 3-900051-07-0, http://www.R-project.org/, (accessed Mar. 2015) (the 3D plot applied the package ‘rgl’).
35 Roy B (1972) Cahiers du Centre d’Etudes de Recherche Operationelle 20:32-43.
36 Roy B, Bouyssou D (1986) Eur J Oper Res 25:200-215. http://dx.doi.org/10.1016/0377-2217(86)90086-X
37 Sailaukhanuly Y, Zhakupbekova A, Amutova F, Carlsen L (2013) Chemosphere 90:112-117. http://dx.doi.org/10.1016/j.chemosphere.2012.08.015
38 (2008) Stockholm Convention. http://chm.pops.int/Home/tabid/2121/language/en-GB/Default.aspx (accessed Febr. 2015)
39 Sørensen PB, Mogensen BB, Carlsen L, Thomsen M (2000) Chemosphere 41:595-601. http://dx.doi.org/10.1016/S0045-6535(00)00007-2
40 Weigend M (2006) Objektorientierte Programmierung mit Python. Mitp-Verlag, Bonn, Germany. ISBN 9783826617508
41 Wienand O (2006) lcell. http//bio.math.berkeley.edu/ranktests/lcell/ (accessed Feb 2015)
Cited by: 1
1. Carlsen L (2016) An alternative view on distribution keys for the possible relocation of refugees in the European Union. Social Indicators Research. In Press. CrossRef
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.