Study of surface properties of TiO2 — NTs films at different anodizing conditions
Abstract
Electrochemical anodizing titanium metal in the fluorine-containing electrolyte to produce nanotubes of titanium dioxide. The surface morphology of the films was investigated by scanning electron microscopy. It was found that with increasing anodizing voltage increasing inner diameter growth rate and distance interporous nanotubes. The method of adsorption and desorption of nitrogen studied the distribution of pore volume. Measured by a specific surface area of titanium dioxide films for determine the conditions of anodizing on their changes.
References
1 O’Regan B, Gratzel М (1991) Nature 353:737-740. http://dx.doi.org/10.1038/353737a0
2 Mukul D, Hongshan H (2012 Scanning electron microscopy. Morphological and photovoltaic studies of TiO2 NTs for high efficiency solar cells. InTech, Rijeka, Croatia. P.537-556. http://dx.doi.org/10.5772/36332
3 Yang J, Mei S, Ferreira JMF (2001) Mater Sci Eng C 15:183-185. http://dx.doi.org/10.1016/S0928-4931(01)00274-0
4 Yan XM, Kang J, Gao L, Xiong L, Mei P (2013) Appl Surf Sci 265:778-783. http://dx.doi.org/10.1016/j.apsusc.2012.11.111
5 Sahil Sahni S, Bhaskar Reddy BS (2007) Mat Sci Eng A-Struct 452: 758-762. http://dx.doi.org/10.1016/j.msea.2006.11.005
6 Pierson HO (1992) Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications. William Andrew Publishing, New York, USA. P.235. ISBN: 978-0-8155-1432-9
7 Nam SH, Hyun JS, Boo JH (2012) Mater Res Bull 47:2717-2721. http://dx.doi.org/10.1016/j.materresbull.2012.04.039
8 Zhu Y, Li H, Koltypin Y, Hacohen YR, Gedanken A (2001) Chem Commun 24:2616-2617. http://dx.doi.org/ 10.1039/B108968B
9 Wu X, Jiang Q Z, Ma ZF, Fu M, Shangguan WF (2005) Solid State Commun 136:513-517. http://dx.doi.org/10.1016/j.ssc.2005.09.023
10 Nogueira AF, Freitas J, Freitas JN, Winnischofer H (2006) J Photoch Photobio A 189:153-160. http://dx.doi.org/10.1016/j.jphotochem.2007.01.023
11 Abidaa B, Chirchia L, Barantonb S, Ghorbela A (2011) Appl Catal B-Environ 106:609-615. http://dx.doi.org/10.1016/j.apcatb.2011.06.022
12 Wen L, Gao J, Zhang F, Zhang G (2007) Mater Trans 48:2464-2466. http://dx.doi.org/10.2320/matertrans.MRA2007616
13 Wang H, Li H, Wang J, Wu J, Li D, Liu M, Su P (2014) Electrochim Acta 137:744-750. http://dx.doi.org/10.1016/j.electacta.2014.05.112
14 Pugazhenthirana N, Murugesana S, Anandan S (2013) J Hazard Mater 263:541-549. http://dx.doi.org/10.1016/j.jhazmat.2013.10.011
15 Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331-3334. http://dx.doi.org/10.1557/JMR.2001.0457
16 Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Small 3:300-304. http://dx.doi.org/10.1002/smll.200600426
17 Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003) J Mater Res 18:156-165. http://dx.doi.org/10.1557/JMR.2003.0022
18 Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Electrochim Acta 456:921-929. http://dx.doi.org/10.1016/S0013-4686(99)00283-2
19 Brunauer S, Deming LS, Deming WS, Teller E (1940) J Am Chem Soc 62:1723-1732. http://dx.doi.org/10.1021/ja01864a025
20 (1972) IUPAC Manual of Symbols and Terminology, Appendix2, Pt.1, Colloid and Surface Chemistry Pure Appl Chem 31:578.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.