Study of the influence of surface-active substances on the initial stage of copper electrodeposition

  • Amantay Dalbanbay al-Farabi Kazakh National University, Almaty, Kazakhstan https://orcid.org/0000-0001-8793-4970
  • Aleksandr Nikolayevich Nefedov al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Roza Akhmetbekovna Nurmanova al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Mikhail Kasymovich Nauryzbayev al-Farabi Kazakh National University, Almaty, Kazakhstan https://orcid.org/0000-0002-6781-6464
Keywords: electrocrystallization, сopper, CMC, DFP, surfactants, сhronoampermetry

Abstract

In this research, the effect of surface-active substances (CMC and DFP) on the electrolysis of copper by cyclic voltammetry (CVA) and chronoamperometric methods was studied. The working electrode was a glassy carbon electrode. Studies show that in the acid solution of copper sulfate (10-2 M CuSO4 + 0.5 M H2SO4), the three-dimensional electrochemical deposition of copper occurs by the mechanism of instantaneous nucleation. The added surface active substances affect the dischargeionization process, the standard electroreduction potential is shifted to the negative side. The added DFP reduces the cathodic peak current, and the addition of CMC results in its increase. At the deposition potentials corresponding to the regions up to the CVA peak current (here, still, the mixed electrodeposition kinetics), the number of nuclei formed is greater for a pure solution, but at current decay potentials, where the diffusion regime takes place, the nuclei population density (NPD) is higher for solutions with surfactants. The most powerful effect here is caused by the addition of DFP. In the case of mixed additives, the NPD values are close to those of the CMC, obviously indicating the preferential adsorption of CMC, whereas the DFP as complexes with copper ions is closer to the near-electrode region.

References

1 Sáez V, Graves J, Paniwnyk L, Mason TJ (2010) Phys Procedia 3:111-115. Crossref

2 Bosch-Navarro C, Rourke JP, Wilson NR (2016) RSC Advances 6:73790-73796. Crossref

3 Tamilvanan A, Nadu T, Kumar BM, Technology T, Nadu T, Nadu T (2016) Int J Nanosci 14:1650001. Crossref

4 Sekar R (2016) The International Journal of Surface Engineering and Coatings 93:255-261. Crossref

5 Lukomska A, Plewka A, Los P (2009) J Electroanal Chem 637:50-54. Crossref

6 Peykova M, Michailova E, Stoychev D, Milchev A (1995) Electrochim Acta 40:2595-2601. Crossref

7 Muresan L, Varvara S, Maurin G, Dorneanu S (2000) Hydrometallurgy 54:161-169. Crossref

8 Bolzán AE (2013) Electrochim Acta 113:706-718. Crossref

10 Sun M, Keefe TJO (1992) Metall Trans B 23:591-599. Crossref

11 Zhang Q, Yu X, Hua Y, Xue W (2015) J Appl Electrochem 45:79-86. Crossref

12 Jović VD, Jović BM, Eis A (2001) J Serb Chem Soc 66:935-952.

13 Bonou L, Eyraud M, Denoyel R, Massiani Y (2002) Electrochim Acta 47:4139-4148. Crossref

14 Akpanbayev RS, Mishra B, Baikonurova AO, Ussoltseva GA (2013) Int J Electrochem Sci 8:3150-3159.

15 Bergström LM, Bergström M (2001) Langmuir 17:993-998. Crossref

16 Trabelsi S, Langevin D (2007) Langmuir 23:1248-1252. Crossref

17 Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carbohyd Polym 82:933–941. Crossref

18 He F, Zhao D (2007) Environ Sci Technol 41:6216-6221. Crossref

19 Li M, Xu Q, Han J, Yun H, Min Y (2015) Int J Electrochem Sci 10:9028-9041.

20 Bayol E, Gurten A, Dursun M, Kayakirilmaz K (2008) Acta Phys-Chim Sin 24:2236-2243. Crossref

21 Yang C, Zhang Z, Tian Z, Zhang K, Li J, Lai Y (2016) J Electrochem Soc 163:A1836-A1840. Crossref

22 Stern HAG, Sadoway DR, Tester JW (2011) J Electroanal Chem 659:143-150. Crossref

23 Grujicic D, Pesic B (2002) Electrochim Acta 47:2901-2912. Crossref

24 Wu S, Yin Z, He Q, Lu G, Zhou X, Zhang H (2011) J Mater Chem 21:3467-3470. Crossref

25 Scharifker B, Hills G (1983) Electrochem Acta 28:879-889. Crossref
Published
2018-03-14
How to Cite
Dalbanbay, A., Nefedov, A., Nurmanova, R., & Nauryzbayev, M. (2018). Study of the influence of surface-active substances on the initial stage of copper electrodeposition. Chemical Bulletin of Kazakh National University, 87(4), 12-19. https://doi.org/https://doi.org/10.15328/cb890
Section
Physical Chemistry and Electrochemistry