Molecular imprinting of bovine serum albumin and lysozyme within the matrix of polyampholyte hydrogels based on acrylamide, sodium salt of 2-acrylamido-2-methyl-1-propanesulfonic acid and (3-acrylamidopropyl)trimethyl ammonium chloride

Keywords: molecularly imprinted polyampholyte hydrogels, bovine serum albumin, lysozyme, sorption-desorption, separation of proteins

Abstract

Molecularly-imprinted polyampholyte (MIP) hydrogels based on nonionic monomer – acrylamide (AAm), anionic monomer – sodium salt of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and cationic monomer – (3-acrylamidopropyl)trimethyl ammonium chloride (APTAC) were obtained by immobilization of bovine serum albumin (BSA) and lysozyme in situ polymerization conditions. It was found that the best amphoteric hydrogel for sorption of BSA is APTAC-75H while for sorption of lysozyme is AMPS-75H. The sorption capacity of APTAC-75H and AMPS-75H with respect to BSA and lysozyme is 305.7 and 64.1-74.8 mg per 1 g of hydrogel respectively. Desorption of BSA and lysozyme from MIP template performed by aqueous solution of 1M NaCl is equal to 82-88%. Separation of BSA and lysozyme from their mixture was performed on MIP templates. The results of adsorption-desorption cycles of BSA on adjusted to BSA polyampholyte hydrogel APTAC-75H and of lysozyme on adjusted to lysozyme polyampholyte hydrogel AMPS-75H show that the mixture of BSA and lysozyme can be selectively separated with the help of MIP hydrogels.

References

1 Lozinsky V (2002) Russ Chem Rev 71:489-511. Crossref

2 Janiak D, Ayyub O, Kofinas P (2010) Polymer 51:665-670. Crossref

3 Lago M, Grinberg V, Burova T, et al (2011) Journal of Functional Biomaterials 2:373-390. Crossref

4 Yang C, Zhou X, Liu Y, et al (2016) J Appl Polym Sci 133:43851. Crossref

5 Huang J, Zhang, Zhang J, et al (2005) J Appl Polym Sci 95:358-361. Crossref

6 Haag S, Barnards M (2017) Prog Coll Pol Sci S 3:41. Crossref

7 Kudaibergenov S, Tatykhanova G, Klivenko A (2016) J Appl Polym Sci 133:43784. Crossref

8 Yang C, Zhou X, Liu Y, et al (2016) Chinese J Anal Chem 44:1322-1327. Crossref

9 Kanazawa R, Sasaki A, Tokuyama H (2012) Sep Purif Technol 96:26-32. Crossref

10 Ou S., Wu M., Chou T, et al (2004) Anal Chim Acta 504:163-166. Crossref

11 Yang C, Zhou X, Liu Y, et al (2016) Chinese J Anal Chem 44:1322-1327. Crossref

12 Ying X, Zhu X, Li D, et al (2019) Talanta 192:14-23. Crossref

13 Toleutay G, Shakhvorostov A. Kabdrakhmanova S et al (2019) Bulletin of Karaganda University. Chemistry Series 2:35-44. Crossref

14 Toleutay G, Su E, Okay O., Kudaibergenov S (2019) Bulletin of Karaganda University. Chemistry Series 4:35-43. Crossref

15 Toleutay G, Dauletbekova M, Shakhvorostov A et al (2019) Macromol Symp 385:1800160. Crossref

16 Toleutay G, Su E, Kudaibergenov S (2020) Colloid Polym Sci 298:273-284. Crossref

17 Kudaibergenov S, Okay O (2020) Polym Advan Technol 1-16. Crossref

18 Wetter L, Deutsch H (1951) J Biol Chem 192:237-242. Crossref

19 Ou S, Wu M, Chou T, et al (2003) Anal Chim Acta 504:1:163-166. Crossref

20 Lago M, Grinberg V, Burova T, et al (2011) J Funct Biomater 2:4:373-90. Crossref

21 Nadia A, Mathias U (2012) Polymer 53:20:4359-4366. Crossref

22 Ying X, Zhu X, Li D, et al (2019) Talanta 192:14-23. Crossref
Published
2021-03-19
How to Cite
Shakhvorostov, A., & Kudaibergenov, S. (2021). Molecular imprinting of bovine serum albumin and lysozyme within the matrix of polyampholyte hydrogels based on acrylamide, sodium salt of 2-acrylamido-2-methyl-1-propanesulfonic acid and (3-acrylamidopropyl)trimethyl ammonium chloride. Chemical Bulletin of Kazakh National University, 100(1), 4-11. https://doi.org/https://doi.org/10.15328/cb1182