Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes
Abstract
In this paper, using the method of electrochemical template synthesis, ordered arrays of metallic nanostructures on the basis of cobalt with various dimensions (180-380 nm) were obtained. The diameter of Co-nanotubes was controlled by original polymer matrix, which provided to prepare arrays consisting of individually standing cobalt nanotubes. The crystal structure of the synthesized samples was studied by X-ray diffraction to determine cell parameters and crystallite size. Decrease of the conductive properties of Co - nanotubes can be explained by inhomogeneity of the crystallites formed during synthesis, because the growth rate of nanostructures directly affects the size of the crystallites.
References
1 Deiss E, Holzer F, Hass O (2002) Electrochim Acta 47:3995–4010. http://dx.doi.org/10.1016/S0013-4686(02)00316-X
2 Wang JG, Tian ML, Kumar N, Mallouk TE (2005) Nano Lett 5:1247-1253. http://dx.doi.org/10.1021/nl050918u
3 X-Z Li (2009) Mater Lett 63:578-580. http://dx.doi.org/10.1016/j.matlet.2008.12.002
4 Zhu YC, Bando Y (2003) Chem Phys Lett 372:640-644. http://dx.doi.org/10.1016/S0009-2614(03)01197-7
5 Huczko A (2000) Appl Phys A-Mater 70:365-376. http://dx.doi.org/10.1007/s003390000440
6 Duan J, Liu J, Cornelius TW et al (2009) Nucl Instrum Meth B 267:2567-2570 http://dx.doi.org/10.1016/j.nimb.2009.05.015
7 Sanchez-Barriga J, Lucas M, Rivero G et al (2007) J Magn Magn Mater 312:99-106 http://dx.doi.org/10.1016/j.jmmm.2006.09.020
8 Yavuz H, Kaygili O (2011) Radiat Eff Defect S 166:100-103. http://dx.doi.org/10.1080/10420150.2010.507671
9 Vivas LG, Ivanov YP, Trabada DG, Proenca MP, Chubykalo-Fesenko O, Vázquez M (2013) Nanotechnology 24:105703. http://dx.doi.org/10.1088/0957-4484/24/10/105703
10 Qin J, Nogués J, Mikhaylova M, Roig A, Muñoz JS, Muhammed (2005) Chem Mater 17:1829-1834. http://dx.doi.org/10.1021/cm047870q
11 Zhou D, Wang T, Zhu MG, Guo ZH, Li W, Li FS (2011) Journal of Magnetics 16:413-416. http://dx.doi.org/10.4283/JMAG.2011.16.4.413
12 Ohgai T, Hoffer X, Fabian A, Gravier L, Ansermet JP (2003) J Mater Chem 13:2530-2534. http://dx.doi.org/10.1039/b306581b
13 Rawtani D, Sajan TR, Agrawal YK (2015) Rev Adv Mater Sci 40:177-187.
14 Sarkar J, Khan GG, Basumallick A. (2007) Bull Mater Sci 30:271-290. http://dx.doi.org/10.1007/s12034-007-0047-0
15 Dave SR, Gao X. (2009) Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 1:583-609. http://dx.doi.org/10.1002/wnan.051.
16 Liao SH, Chen KL, Wang CM, Chieh JJ, Horng HE, Wang LM, Wu C, Yang HC (2014) Sensors 14:21409-21417. http://dx.doi.org/10.3390/s141121409
17 Mitchell DT, Lee SB, Martin CR (2002) J Am Chem Soc 124:11864-11865. http://dx.doi.org/10.1021/ja027247b
18 Yen SK, Padmanabhan P, Selvan ST (2013) Theranostics 3:986-1003. http://dx.doi.org/10.7150/thno.4827
19 Kalska-Szostko B, Orzechowska E, Wykowska U. (2013) Colloid Surface B 111:509-516. http://dx.doi.org/10.1016/j.colsurfb.2013.05.033
20 Hua Z, Yang S, Huang H, Lv L, Lu M, Gu B, Du Y (2006) Nanotechnology 17:5106-5110. http://dx.doi.org/10.1088/0957-4484/17/20/011
21 Langford JI, Wilson AJC. (1978) J Appl Cryst 11:102-113. http://dx.doi.org/10.1107/S0021889878012844
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.