Fe nanotubes: synthesis, structural and magnetic properties
Abstract
The article presents results of investigations of hollow Fe nanotubes obtained by electrochemical deposition into the pores of polyethylene terephthalate membranes. Morphological and structural parameters of the synthesized samples of nanotubes were studied by methods of scanning electron microscopy, X-ray and energy dispersive analysis. The investigations of the magnetic properties of nanotubes were provided by Mossbauer and vibration magnetometer methods. Macro- and micromagnetic parameters of nanotubes were determined. X-ray analysis showed that walls of nanotubes have a BCC structure with non- preferred direction and the crystal lattice parameter a = 2.8627 Å. Due to defects formation in the process of electrochemical deposition, the deformation of crystal lattices occurs at crystallites interfaces. It was also found that walls of nanotubes were formed by separate crystallites settled layer by layer. Based on the analysis of the study of dependence of the magnetization on magnetic field, it was found that the basic magnetic characteristics of arrays of Fe nanotubes decreased monotonously in the temperature range from 100 to 300 K.
References
1 Dauginet-De Pra D, Ferain E, Legras R, Demoustier-Champagne S (2002) Nucl Instrum Meth B 196:81-88. http://dx.doi.org/10.1016/S0168-583X(02)01252-1
2 Guo P, Martin CR, Zhao Y, Ge J, Zare RN (2010) Nano Lett 10:2202-2206. http://dx.doi.org/10.1021/nl101057d
3 Shen C, Wang X, Zhang W, Kang F (2013) Scientific Reports 3:2294. http://dx.doi.org/10.1038/srep02294
4 Natelson D (2006) Nat Mater 5:853-854. http://dx.doi.org/10.1038/nmat1769
5 Chou SY, Krauss PR, Renstrom PJ (1996) Science 272:85-87. http://dx.doi.org/10.1126/science.272.5258.85
6 Boarino L, Borini S, Amato G (2009) J Electrochem Soc 156:K223-K226. http://dx.doi.org/10.1149/1.3232202
7 Ozel T, Bourret GR, Mirkin CA (2015) Nat Nanotechnol 10:319-324. http://dx.doi.org/10.1038/nnano.2015.33
8 Garcia R, Knoll AW, Riedo E (2014) Nat Nanotechnol 9:577-587. http://dx.doi.org/10.1038/nnano.2014.157
9 Bailey TC, Johnson SC, Sreenivasan SV, Ekerdt JG, Willson CG, Resnick DJ (2002) J Photopolym Sci Tec 15:481-486. http://dx.doi.org/10.2494/photopolymer.15.481
10 Vivas LG, Ivanov YP, Trabada DG, Proenca MP, Chubykalo-Fesenko O, Vázquez M (2013) Nanotechnology 24:105703. http://dx.doi.org/10.1088/0957-4484/24/10/105703
11 Rawtani D, Sajan T, Agrawal YK (2015) Rev Adv Mater Sci 40:177-187.
12 Mitchell DT, Lee SB, Martin CR (2002) J Am Chem Soc 124:11864-11865. http://dx.doi.org/10.1021/ja027247b
13 Liao SH, Chen KL, Wang CM, Chieh JJ, Horng HE, Wang LM, Wu C, Yang HC (2014) Sensors 14:21409-21417. http://dx.doi.org/10.3390/s141121409
14 Yen SK, Padmanabhan P, Selvan ST (2013) Theranostics 3:986-1003. http://dx.doi.org/ 10.7150/thno.4827
15 He HY (2016) Micropor Mesopor Mat 227:31-38. http://dx.doi.org/10.1016/j.micromeso.2016.02.038
16 Liu Y, Jiang H, Zhu Y, Yang X, Li C (2016) J Mater Chem A 4:1694-1701. http://dx.doi.org/10.1039/C5TA10551J
17 Boarino L, Borini S, Amato G (2009) J Electrochem Soc 156:K223-K226. http://dx.doi.org/10.1149/1.3232202
18 Qin J, Nogués J, Mikhaylova M, Roig A, Muñoz JS, Muhammed M (2005) Chem Mater 17:1829-1834. http://dx.doi.org/10.1021/cm047870q
19 Hua Z, Yang S, Huang H, Lv L, Lu M, Gu B, Du Y (2006) Nanotechnology 17:5106-5110. http://dx.doi.org/10.1088/0957-4484/17/20/011
20 Zhou D, Wang T, Zhu MG, Guo ZH, Li W, Li FS (2011) Journal of Magnetics 16:413-416. http://dx.doi.org/10.4283/JMAG.2011.16.4.413
21 Shao P, Ji G, Chen P (2005) J Membrane Sci Vol.255:1-11. http://dx.doi.org/10.1016/j.memsci.2005.01.018
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.