Quantification of phenol in soil using solid-phase microextraction, gas chromatography-mass spectrometry and standard addition
Abstract
Phenol is a toxic environmental pollutant possessing carcinogenic and mutagenic properties. Determination of phenol in soil by certified methods requires long and laborious sample preparation. Solid-phase microextraction (SPME) allows much simpler and faster determination of pollutants in soils. However, method accuracy is limited by the problem of effective matrix effect control. The aim of this study was to develop a rapid and inexpensive method for the quantitative determination of phenol in soil using SPME, gas chromatography-mass spectrometry and standard addition. Extraction temperature 80°C provides the lowest relative standard deviation being 2.1 and 4.6% for aqueous and soil samples, respectively. Soil equilibration time after addition of phenol standard at 80°C should take at least 6 h. The developed method was successfully tested on model and real soil samples having phenol concentrations 0.44 and 0.059 mg/kg, respectively. Coefficients of linear approximation of calibration dependences were higher than 0.97. Method detection limit depends on the affinity of matrix to analyte and is lower than 10 µg/kg.
References
1 Kolushpaeva AT (2010) Evaluation of the current state of environmental problems related to pollution of soil [Ocenka sovremennogo sostoyaniya ecologicheskih problem svyazannykh s zagryazneniem pochvennyh sistem]. Proceedings of the International scientific-practical conference “Economics, law, culture in the era of social transformation”, Almaty, Kazakhstan. P.186-187. (In Russian)
2 Smith K, Mullins C (2000) Soil and Environmental Analysis. New-York, US. P.35-38. ISBN 0-8247-0414-2
3 ATSDR (2008). Toxicological Profile for Phenol. Atlanta, USA.
4 Russian Ministry of Health (2003) GN 2.1.6.1338-03 “Concentration limits of pollutants in ambient air of populated areas”. Moscow, Russia.
5 Canadian Council of Ministers of the Environment (1997) Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. Phenol. Winnipeg, Canada.
6 Michałowicz J, Duda W (2007) Polish J Environ Stud 16:347-362. URL: http://www.pjoes.com/pdf/16.3/347-362.pdf. (Accessed 01/11/2015)
7 Okolelova A, Zheltobruhov V, Merzlyakov A (2013) Basic Research [Fundamental'nye issledovaniya] 4:384-387. (In Russian)
8 Kahru A, Maloverjan A, Sillak H, Põllumaa L (2002) Environ Sci Pollut Res Int 1:27-33. http://dx.doi.org/10.1007/bf02987422
9 Xing H, Wang X, Chen X, Wang M, Zhao R (2015) J Sep Sci 16:1419-1425. http://dx.doi.org/10.1002/jssc.201500022
10 Sirvent G, Sanchez J, Hidaldo M, Salvago V (2009) Int J Environ Anal Chem. 89:293-304. http://dx.doi.org/10.1080/03067310802638285
11 US EPA (1996) Method 3540 C. Soxhlet extraction. Washington, USA.
12 Santana CM, Ferrera ZS, Padrón ME, Rodríguez JJ (2009) Molecules 14:298-320. http://dx.doi.org/10.3390/molecules14010298
13 Souza-Silva É, Reyes-Garcés N, Gómez-Ríos G, Boyaci E, Bojko B, Pawliszyn J (2015) TrAC Trends Anal Chem 71:249-264. http://dx.doi.org/10.1016/j.trac.2015.04.017
14 Buchholz K, Pawllszyn J (1994) Anal Chem 66:160-167. http://dx.doi.org/10.1021/ac00073a027
15 Bartfik P, Сap L (1997) J Chromatogr A 767:171-175. http://dx.doi.org/10.1016/S0021-9673(96)01090-4
16 Simões N, Cardoso V, Ferreira E, Benoliel M, Almeida C (2007) Chemosphere 68:501-510. http://dx.doi.org/10.1016/j.Chemosphere.2006.12.057
17 Es-haghi A, Baghernejad M, Bagheri H (2012) Anal Chim Acta 742:17-21. http://dx.doi.org/10.1016/j.aca.2012.01.002
18 Llompart M, Blanco B, Cela R (2000) J Microcolumn Sep 12:25-32. http://dx.doi.org/10.1002/(sici)1520-667x(2000)12:1<25::aid-mcs4>3.0.co;2-u
19 Baciocchi R, Attinà M, Lombardi G, Boni M (2001) J Chromatogr A 911:135-41. http://dx.doi.org/10.1016/s0021-9673(00)01249-8
20 Yegemova S, Kenessov B, Derbissalin M, Koziel J (2015) Map of soil sampling sites for the phenol screening by solid phase microextraction and gas chromatography – mass spectrometry. Google Maps. URL: https://www.google.com/maps/d/edit?mid=zaVQM9knLobU.k_YDraogKdH0&usp=sharing
21 Yegemova S, Bakaikina N, Kenessov B, Koziel J (2015) Talanta 143:226-233. http://dx.doi.org/10.1016/j.talanta.2015.05.045
22 Subramanyam B, Das A (2009) Desalination 249:914-921. http://dx.doi.org/10.1016/j.desal.2009.05.020
23 Carlsen L, Baimatova N, Kenessov B, Kenessova O (2013) Int J Biol Chem 5:49-69. URL: http://ijbch.kaznu.kz/index.php/kaznu/article/view/82. (Accessed 01/11/2015)
Cited by: 1
1. Kenessov BN, Koziel J, Bakaikina NV, Orazbayeva D (2016) Perspectives and challenges of on-site quantification of organic pollutants in soils using solid-phase microextraction. TrAC Trends in Analytical Chemistry. In Press. CrossRef
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.