Synthesis and study of properties of Zn nanotubes
Abstract
This paper describes the method of synthesis of Zn-based nanotubes using electrochemical deposition, as well as characterizes their morphological and conductive properties. Track membranes based on polyethylene terephthalate (PET) with a thickness of 12 microns with pore diameters of 380±10 nm were used as templates. Characterization of the structural features was carried out by scanning electron microscopy (SEM), energy dispersive analysis (EDA) and X-ray diffractometric analysis (XRD), and indirectly, during the study of electrical conductivity.
Calculation of the average crystallite sizes showed that the reduction in the intensity of the oxide phase ZnO reduces the size of the crystallites from 41.52 nm at 1.25 V to 29.34 nm at 1.75 V. The number of defects, which interferes with the movement of electrons, reduced with the decreasing of the average size of crystallites in the nanotubes. The number of defects directly affected the conductive properties of Zn based nanotubes.
References
1 Park WI, Kim JS, Yi GC, Lee HJ (2005) Adv Mater 17:1393-1397. http://dx.doi.org/10.1002/adma.200401732
2 Mofor AC, Bakin A, Chejarla U, Schlenker E, El-Shaer A (2007) Superlattices Microstruct 42:415-420. http://dx.doi.org/10.1016/j.spmi.2007.04.027
3 Park DJ, Lee JY, Kim DC, Mohanta SK, Cho HK (2007) Appl Phys Lett 91:143115. http://dx.doi.org/10.1063/1.2794418
4 Wu XF, Xu CX, Zhu GP, Ling YM (2006) Chinese Phys Lett 23:2165. http://dx.doi.org/10.1088/0256-307X/23/8/056
5 Han XH, Wang GZ, Tao Q, Cao WL, Liu RB, Zou BS, Hou JG (2005) Appl Phys Lett 86:223106. http://dx.doi.org/10.1063/1.1941477
6 Park HK, Yang BS, Park S, Kim MS, Shin JC, Heo J (2014) J Alloy Compd 605:124-130. http://dx.doi.org/10.1016/j.jallcom.2014.03.169
7 Ramanathan S, Patibandla S, Bandyopadhyay S, Edwards JD, Anderson J (2006) J Mater Sci-Mater El 17:651-655. http://dx.doi.org/10.1007/s10854-006-0021-4
8 Beard MC, Turner GM, Schmuttenmaer CA (2002) Nanoletters 9:983-387. http://dx.doi.org/10.1021/nl0256210
9 Asomoza R, Malodonado H, Olvera MD (2000) J Mater Sci-Mater El 11:383-387. http://dx.doi.org/10.1023/A:1008990431442
10 Murali KR, Srinivasan K, Trivedi DC (2005) Mater Lett 59:15-18. http://dx.doi.org/10.1016/j.matlet.2004.09.006
11 Studenikin SA, Golege N, Cocivera M (1998) J Appl Phys 83:2104-2111. http://dx.doi.org/10.1063/1.368295
12 Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gosele U, Fischer SF (2001) Appl Phys Lett 79:1360. http://dx.doi.org/10.1063/1.1399006
13 Edmondson MJ, Zhou WZ, Sieber SA, Jones IP, Gameson I, Anderson PA (2001) Adv Mater 13:1608-1611. http://dx.doi.org/10.1002/1521-4095(200111)13:21%3C1608::AID-ADMA1608%3E3.0.CO;2-S
14 Fan ZY, Dutta D, Chien CJ, Chen HY, Brown EC, Chang PC, Lua JG (2006) Appl Phys Lett 89:213110. http://dx.doi.org/10.1063/1.2387868
15 Martinson ABF, Elam JW, Hupp JT, Pellin MJ (2007) Nano Lett 7:2183-2187. http://dx.doi.org/10.1021/nl070160
16 Apel PYu, Blonskaya IV, Oganessiana VR, Orelovitcha OL, Trautmannb C (2001) Nucl Instrum Meth B 185:216-221. http://dx.doi.org/10.1016/S0168-583X(01)00967-3
17 Vilensky AI, Zagorski DL, Apel PY (2004) Nucl Instrum Meth B 218:294-299. http://dx.doi.org/10.1016/j.nimb.2003.12.066
18 Shao P, JI G, Chen P (2005) J Memb Sci 255:1-11. http://dx.doi.org/10.1016/j.memsci.2005.01.018
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.